cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035444 Number of partitions of n into parts 4k.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 11, 0, 0, 0, 15, 0, 0, 0, 22, 0, 0, 0, 30, 0, 0, 0, 42, 0, 0, 0, 56, 0, 0, 0, 77, 0, 0, 0, 101, 0, 0, 0, 135, 0, 0, 0, 176, 0, 0, 0, 231, 0, 0, 0, 297, 0, 0, 0, 385, 0, 0, 0, 490, 0, 0, 0, 627, 0, 0, 0, 792, 0, 0, 0, 1002, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul(1/(1-x^(4*k)),k=1..n), x,n+1),x,n),n=0..105); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 04 2018 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
  • PARI
    A035444(n) = if((n%4),0,numbpart(n/4)); \\ Antti Karttunen, Jul 03 2018

Formula

a(4*n) = A000041(n). a(4*n + 1) = a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 02 2012
G.f.: 1 / Product_{n>=1} 1 - q^(4*n). - Joerg Arndt, Aug 26 2015

Extensions

Error in offset corrected by Vaclav Kotesovec, Aug 26 2015
Name simplified, Joerg Arndt, Aug 26 2015