A035444 Number of partitions of n into parts 4k.
1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 11, 0, 0, 0, 15, 0, 0, 0, 22, 0, 0, 0, 30, 0, 0, 0, 42, 0, 0, 0, 56, 0, 0, 0, 77, 0, 0, 0, 101, 0, 0, 0, 135, 0, 0, 0, 176, 0, 0, 0, 231, 0, 0, 0, 297, 0, 0, 0, 385, 0, 0, 0, 490, 0, 0, 0, 627, 0, 0, 0, 792, 0, 0, 0, 1002, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Programs
-
Maple
seq(coeff(series(mul(1/(1-x^(4*k)),k=1..n), x,n+1),x,n),n=0..105); # Muniru A Asiru, Jul 22 2018
-
Mathematica
nmax=100; CoefficientList[Series[Product[1/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 04 2018 *) nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
-
PARI
A035444(n) = if((n%4),0,numbpart(n/4)); \\ Antti Karttunen, Jul 03 2018
Formula
a(4*n) = A000041(n). a(4*n + 1) = a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 02 2012
G.f.: 1 / Product_{n>=1} 1 - q^(4*n). - Joerg Arndt, Aug 26 2015
Extensions
Error in offset corrected by Vaclav Kotesovec, Aug 26 2015
Name simplified, Joerg Arndt, Aug 26 2015