A035470 Number of ways to break {1,2,3,...,n} into sets with equal sums.
1, 1, 2, 2, 2, 2, 6, 12, 11, 2, 80, 166, 2, 665, 2918, 3309, 9296, 23730, 31875, 301030, 422897, 2, 13716867, 71504980, 100664385, 54148591, 880696662, 498017759, 27450476787, 111911522819, 179459955554, 2144502175214, 59115423983, 45837019664552, 375743493787258, 816118711787493, 2, 9492169507922
Offset: 1
Keywords
Examples
a(7) = 6 since we have 1234567, 16/25/34/7, 167/2345, 257/1346, 347/1256, 356/1247. From _Gus Wiseman_, Jul 13 2019: (Start) The a(6) = 2 through a(9) = 11 set partitions with equal block-sums: {123456} {1234567} {12345678} {123456789} {16}{25}{34} {1247}{356} {12348}{567} {12345}{69}{78} {1256}{347} {12357}{468} {1239}{456}{78} {1346}{257} {12456}{378} {1248}{357}{69} {167}{2345} {1278}{3456} {1257}{348}{69} {16}{25}{34}{7} {1368}{2457} {1347}{258}{69} {1458}{2367} {1356}{249}{78} {1467}{2358} {159}{2346}{78} {1236}{48}{57} {159}{267}{348} {138}{246}{57} {168}{249}{357} {156}{237}{48} {18}{27}{36}{45}{9} {18}{27}{36}{45} (End)
Links
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; 1+ add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 03 2009
-
Mathematica
b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args]-1}]]], {args[[-1]]-1}]], {j, 1, Length[args]-1}]]; b[a1_List, a2_List] := b[Join[a1, a2]]; a[n_] := a[n] = With[{m = n*(n+1)/2}, 1+Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n &]}]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],SameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)
Extensions
More terms from John W. Layman, Mar 18 2002
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, May 24 2015
a(35)-a(38) from Max Alekseyev, Feb 15 2024
Comments