A035536 Number of partitions of n with equal number of parts congruent to each of 1 and 2 (mod 3).
1, 0, 0, 2, 0, 0, 6, 0, 0, 14, 0, 0, 32, 0, 0, 66, 0, 0, 134, 0, 0, 256, 0, 0, 480, 0, 0, 868, 0, 0, 1540, 0, 0, 2664, 0, 0, 4536, 0, 0, 7574, 0, 0, 12474, 0, 0, 20234, 0, 0, 32428, 0, 0, 51324, 0, 0, 80388, 0, 0, 124582, 0, 0, 191310, 0, 0, 291114, 0, 0, 439394, 0, 0, 657936, 0, 0
Offset: 0
Keywords
Crossrefs
Trisection gives: A035592.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+ b(n-i, min(n-i, i), c+[0, 1, -1][1+irem(i, 3)]))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..70); # Alois P. Heinz, Sep 04 2020
-
Mathematica
equalQ[partit_] := Total[Switch[Mod[#, 3], 0, 0, 1, 1, 2, -1]& /@ partit] == 0; a[n_] := If[Mod[n, 3] != 0, 0, Select[IntegerPartitions[n], equalQ] // Length]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 71}] (* Jean-François Alcover, Dec 07 2016 *)
Extensions
More terms from David W. Wilson
Comments