cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A036088 Centered cube numbers: (n+1)^10 + n^10.

Original entry on oeis.org

1, 1025, 60073, 1107625, 10814201, 70231801, 342941425, 1356217073, 4560526225, 13486784401, 35937424601, 87854788825, 199775856073, 427113146825, 865905045601, 1676162018401, 3115505528225
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n^2 + 2n + 1) * (n^8 + 4n^7 + 18n^6 + 40n^5 + 56n^4 + 50n^3 + 27n^2 + 8n + 1), multiple of A001844(n). Semiprime for n in {2, 4, 7, 14, 19, 22, 32, 60, 65, 70, 87, 99, 102, 135, 137, ...}. - Jonathan Vos Post, Aug 26 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^10+n^10: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
  • Mathematica
    Total/@Partition[Range[0,20]^10,2,1] (* Harvey P. Dale, Aug 04 2019 *)

Formula

G.f.: -(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)*(1+x)^2 / (x-1)^11. - R. J. Mathar, Aug 27 2011

A036089 Centered cube numbers: (n+1)^11 + n^11.

Original entry on oeis.org

1, 2049, 179195, 4371451, 53022429, 411625181, 2340123799, 10567261335, 39970994201, 131381059609, 385311670611, 1028320041299, 2535168764725, 5841725563701, 12699321029039, 26241941903791, 51864082352049
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2*n+1) * (n^10 + 5*n^9 + 25*n^8 + 70*n^7 + 130*n^6 + 166*n^5 + 148*n^4 + 91*n^3 + 37*n^2 + 9*n + 1). - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

  • Magma
    [(n+1)^11+n^11: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • PARI
    Vec((1 + x)*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^12 + O(x^40)) \\ Colin Barker, Feb 06 2020

Formula

From Colin Barker, Feb 06 2020: (Start)
G.f.: (1 + x)*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>11.
(End)

A036091 Centered cube numbers: (n+1)^13+n^13.

Original entry on oeis.org

1, 8193, 1602515, 68703187, 1287811989, 14281397141, 109949704423, 646644824295, 3091621642217, 12541865828329, 44522712143931, 141515917523003, 409868311971325, 1096589879846397, 2739909841613519
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n + 1) * (n^12 + 6n^11 + 36n^10 + 125n^9 + 295n^8 + 496n^7 + 610n^6 + 553n^5 + 367n^4 + 174n^3 + 56n^2 + 11n + 1). Semiprime for n in {1, 8, 15, 21, 86, 135, 141, 249, 260, 278, 323, 326, 363, ...}. - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

A036092 Centered cube numbers: a(n) = (n+1)^14 + n^14.

Original entry on oeis.org

1, 16385, 4799353, 273218425, 6371951081, 84467679721, 756587236945, 5076269583953, 27274838966065, 122876792454961, 479749833583241, 1663668298132105, 5221294850248153, 15049383211257305, 40304932850948641, 101250520063318561, 240435420597328865
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n^2 + 2n + 1) * (n^12 + 6n^11 + 39n^10 + 140n^9 + 341n^8 + 590n^7 + 741n^6 + 680n^5 + 451n^4 + 210n^3 + 65n^2 + 12n + 1). Semiprime for n in {2, 5, 22, 24, 34, 35, 39, 84, 217, 220, 285, ...}. - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

Formula

G.f.: -(x +1)^2*(x^12 +16368*x^11 +4520946*x^10 +193889840*x^9 +2377852335*x^8 +10465410528*x^7 +17505765564*x^6 +10465410528*x^5 +2377852335*x^4 +193889840*x^3 +4520946*x^2 +16368*x +1) / (x -1)^15. - Colin Barker, Feb 16 2015

A036095 Centered cube numbers: a(n) = (n+1)^17 + n^17.

Original entry on oeis.org

1, 131073, 129271235, 17309009347, 780119322309, 17689598897861, 249557173431943, 2484430327672455, 18928981513351817, 116677181699666569, 605447028499293771, 2724058135239730763, 10869027026121774925
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n + 1) * (n^16 + 8n^15 + 64n^14 + 308n^13 + 1036n^12 + 2576n^11 + 4900n^10 + 7274n^9 + 8518n^8 + 7896n^7 + 5776n^6 + 3300n^5 + 1444n^4 + 468n^3 + 106n^2 + 15n + 1). Semiprime for n in {1, 5, 21, 29, 33, ...}. - Jonathan Vos Post, Aug 27 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

A210694 T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.

Original entry on oeis.org

5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1

Views

Author

R. H. Hardin, with R. J. Mathar in the Sequence Fans Mailing List, Mar 30 2012

Keywords

Comments

Table starts
...5....13.....25......41.......61.......85.......113.......145........181
...9....35.....91.....189......341......559.......855......1241.......1729
..17....97....337.....881.....1921.....3697......6497.....10657......16561
..33...275...1267....4149....10901....24583.....49575.....91817.....159049
..65...793...4825...19721....62281...164305....379793....793585....1531441
.129..2315..18571...94509...358061..1103479...2920695...6880121...14782969
.257..6817..72097..456161..2070241..7444417..22542017..59823937..143046721
.513.20195.281827.2215269.12030821.50431303.174571335.521638217.1387420489
Solutions are determined by the diagonal, extended with x(i,j) = (x(i,i)+x(j,j))/2 * (-1)^(i-j)

Examples

			Some solutions for n=3 k=4
.-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0
..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1
.-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2
..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
		

Crossrefs

Column 1 is A000051(n+1)
Column 2 is A007689(n+1)
Column 3 is A074605(n+1)
Column 4 is A074611(n+1)
Column 5 is A074615(n+1)
Column 6 is A074619(n+1)
Column 7 is A074622(n+1)
Column 8 is A074624(n+1)
Row 1 is A001844
Row 2 is A005898
Row 3 is A008514
Row 4 is A008515
Row 5 is A008516
Row 6 is A036085
Row 7 is A036086
Row 8 is A036087

Formula

T(n,k)=k^(n+1)+(k+1)^(n+1)
Showing 1-6 of 6 results.