cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036097 Centered cube numbers: (n+1)^19+n^19.

Original entry on oeis.org

1, 524289, 1162785755, 276040168411, 19348364235069, 628433226338621, 12008254925383639, 155514083261229015, 1494966905748847961, 11350851717672992089, 71159090448414546291, 380639089819037473139, 1781400289746069037525, 7438224249324360507861
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n + 1) * (n^18 + 9n^17 + 81n^16 + 444n^15 + 1716n^14 + 4956n^13 + 11088n^12 + 19650n^11 + 27966n^10 + 32206n^9 + 30086n^8 + 22748n^7 + 13820n^6 + 6656n^5 + 2486n^4 + 695n^3 + 137n^2 + 17n + 1). Semiprime for n in {1, 3, 8, 39, 41, 54, 111, 119, 141 ...}. [Jonathan Vos Post, Aug 27 2011]
Sums of consecutive pairs of terms of A010807. - Wesley Ivan Hurt, Jul 13 2014

Examples

			1^19 + (1+1)^19 = 524289 = 3 * 174763, a semiprime.
		

Crossrefs

Programs

Formula

a(n) = A010807(n+1) + A010807(n). - Wesley Ivan Hurt, Jul 13 2014

A036098 Centered cube numbers: a(n) = (n+1)^20 + n^20.

Original entry on oeis.org

1, 1048577, 3487832977, 1102998412177, 96466943268401, 3751525871703601, 83448424737674977, 1232713770904458977, 13310586963663775777, 112157665459056928801, 772749994932560009201, 4506509987380035131377
Offset: 0

Views

Author

Keywords

Comments

Never prime because a(n) = (2n^4 + 4n^3 + 6n^2 + 4n + 1) * (n^16 + 8n^15 + 76n^14 + 392n^13 + 1394n^12 + 3632n^11 + 7112n^10 + 10656n^9 + 12376n^8 + 11220n^7 + 7942n^6 + 4356n^5 + 1819n^4 + 560n^3 + 120n^2 + 16n + 1). Semiprime for n in {1, 13, 14, 54, 162, ...}. - Jonathan Vos Post, Aug 27 2011

Examples

			a(1) = 1^20 + (1+1)^20 = 1048577 = 17 * 61681, which is semiprime.
		

Crossrefs

Programs

Showing 1-2 of 2 results.