A036121 5^n mod 23.
1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Magma
[Modexp(5, n, 23): n in [0..100]]; // Vincenzo Librandi, Feb 07 2011
-
Maple
with(numtheory): i=9: [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
-
Mathematica
Mod[5^Range[0, 50], 23] (* Wesley Ivan Hurt, Jul 06 2014 *) PowerMod[5,Range[0,80],23] (* or *) PadRight[{},80,{1,5,2,10,4,20,8,17,16,11,9,22,18,21,13,19,3,15,6,7,12,14}] (* Harvey P. Dale, Jul 10 2018 *)
-
PARI
a(n)=lift(Mod(5,23)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(5,n,23)for n in range(0,63)] # - Zerinvary Lajos, Nov 26 2009
Formula
a(n) = +a(n-1) -a(n-11) +a(n-12). G.f.: ( -1-4*x+3*x^2-8*x^3+6*x^4-16*x^5+12*x^6-9*x^7+x^8+5*x^9+2*x^10-14*x^11 ) / ( (x-1)*(1+x)*(x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1) ). - R. J. Mathar, Apr 20 2010
a(n) = a(n+22). - R. J. Mathar, Jun 04 2016