cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036121 5^n mod 23.

Original entry on oeis.org

1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 2, 10, 4, 20, 8
Offset: 0

Views

Author

Keywords

References

  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Programs

  • Magma
    [Modexp(5, n, 23): n in [0..100]]; // Vincenzo Librandi, Feb 07 2011
    
  • Maple
    with(numtheory): i=9: [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
  • Mathematica
    Mod[5^Range[0, 50], 23] (* Wesley Ivan Hurt, Jul 06 2014 *)
    PowerMod[5,Range[0,80],23] (* or *) PadRight[{},80,{1,5,2,10,4,20,8,17,16,11,9,22,18,21,13,19,3,15,6,7,12,14}] (* Harvey P. Dale, Jul 10 2018 *)
  • PARI
    a(n)=lift(Mod(5,23)^n) \\ Charles R Greathouse IV, Mar 22 2016
  • Sage
    [power_mod(5,n,23)for n in range(0,63)] # - Zerinvary Lajos, Nov 26 2009
    

Formula

a(n) = +a(n-1) -a(n-11) +a(n-12). G.f.: ( -1-4*x+3*x^2-8*x^3+6*x^4-16*x^5+12*x^6-9*x^7+x^8+5*x^9+2*x^10-14*x^11 ) / ( (x-1)*(1+x)*(x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1) ). - R. J. Mathar, Apr 20 2010
a(n) = a(n+22). - R. J. Mathar, Jun 04 2016