A036126 a(n) = 3^n mod 43.
1, 3, 9, 27, 38, 28, 41, 37, 25, 32, 10, 30, 4, 12, 36, 22, 23, 26, 35, 19, 14, 42, 40, 34, 16, 5, 15, 2, 6, 18, 11, 33, 13, 39, 31, 7, 21, 20, 17, 8, 24, 29, 1, 3, 9, 27, 38, 28, 41, 37, 25, 32, 10, 30, 4, 12, 36, 22, 23, 26
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,-1,1).
Crossrefs
Cf. A000244 (3^n).
Programs
-
GAP
List([0..60],n->PowerMod(3,n,43)); # Muniru A Asiru, Oct 18 2018
-
Magma
[Modexp(3, n, 43): n in [0..100]]; // G. C. Greubel, Oct 18 2018
-
Maple
i := pi(43) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[3, Range[0, 100], 43] (* G. C. Greubel, Oct 16 2018 *) PadRight[{},120,{1,3,9,27,38,28,41,37,25,32,10,30,4,12,36,22,23,26,35,19,14,42,40,34,16,5,15,2,6,18,11,33,13,39,31,7,21,20,17,8,24,29}] (* Harvey P. Dale, Mar 30 2019 *)
-
PARI
a(n)=lift(Mod(3,43)^n) \\ Charles R Greathouse IV, Mar 22 2016
Formula
a(n) = a(n-1) - a(n-21) + a(n-22). - R. J. Mathar, Feb 08 2011
a(n) = a(n+42). - R. J. Mathar, Jun 04 2016
a(n) = 43 - a(n+21) for all n in Z. - Michael Somos, Oct 17 2018