cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036134 a(n) = 3^n mod 79.

Original entry on oeis.org

1, 3, 9, 27, 2, 6, 18, 54, 4, 12, 36, 29, 8, 24, 72, 58, 16, 48, 65, 37, 32, 17, 51, 74, 64, 34, 23, 69, 49, 68, 46, 59, 19, 57, 13, 39, 38, 35, 26, 78, 76, 70, 52, 77, 73, 61, 25, 75, 67, 43, 50, 71, 55, 7, 21, 63, 31, 14
Offset: 0

Views

Author

Keywords

Comments

Because a(39) = 78, the Legendre symbol (3/79) = -1, meaning that 3 is not a quadratic residue of 79. Furthermore, it means that 3 is prime in Z[sqrt(79)]. - Alonso del Arte, Oct 01 2012

Examples

			a(4) = 2 because 3^4 = 81 and 81 - 79 = 2.
		

References

  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Crossrefs

Cf. A000244 (3^n).

Programs

  • GAP
    List([0..60],n->PowerMod(3,n,79)); # Muniru A Asiru, Oct 17 2018
  • Magma
    [Modexp(3, n, 79): n in [0..100]]; // G. C. Greubel, Oct 17 2018
    
  • Maple
    [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
  • Mathematica
    Table[Mod[3^n, 79], {n, 0, 60}] (* Alonso del Arte, Oct 01 2012 *)
    PowerMod[3,Range[0,100],79] (* Harvey P. Dale, Feb 21 2024 *)
  • PARI
    a(n)=lift(Mod(3,79)^n) \\ Charles R Greathouse IV, Mar 22 2016
    
  • Python
    for n in range(0, 100): print(int(pow(3, n, 79)), end=' ') # Stefano Spezia, Oct 17 2018
    

Formula

From G. C. Greubel, Oct 17 2018: (Start)
a(n) = a(n-1) - a(n-39) + a(n-40).
a(n+78) = a(n). (End)