A036134 a(n) = 3^n mod 79.
1, 3, 9, 27, 2, 6, 18, 54, 4, 12, 36, 29, 8, 24, 72, 58, 16, 48, 65, 37, 32, 17, 51, 74, 64, 34, 23, 69, 49, 68, 46, 59, 19, 57, 13, 39, 38, 35, 26, 78, 76, 70, 52, 77, 73, 61, 25, 75, 67, 43, 50, 71, 55, 7, 21, 63, 31, 14
Offset: 0
Examples
a(4) = 2 because 3^4 = 81 and 81 - 79 = 2.
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
Crossrefs
Cf. A000244 (3^n).
Programs
-
GAP
List([0..60],n->PowerMod(3,n,79)); # Muniru A Asiru, Oct 17 2018
-
Magma
[Modexp(3, n, 79): n in [0..100]]; // G. C. Greubel, Oct 17 2018
-
Maple
[ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
Table[Mod[3^n, 79], {n, 0, 60}] (* Alonso del Arte, Oct 01 2012 *) PowerMod[3,Range[0,100],79] (* Harvey P. Dale, Feb 21 2024 *)
-
PARI
a(n)=lift(Mod(3,79)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Python
for n in range(0, 100): print(int(pow(3, n, 79)), end=' ') # Stefano Spezia, Oct 17 2018
Comments