cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036216 Expansion of 1/(1 - 3*x)^4; 4-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 12, 90, 540, 2835, 13608, 61236, 262440, 1082565, 4330260, 16888014, 64481508, 241805655, 892820880, 3252418920, 11708708112, 41712272649, 147219785820, 515269250370, 1789882659180, 6175095174171, 21171754882872
Offset: 0

Views

Author

Keywords

Comments

With three leading zeros, 3rd binomial transform of (0,0,0,1,0,0,0,0,...). - Paul Barry, Mar 07 2003
Number of n-permutations (n=4) of 4 objects u, v, w, z, with repetition allowed, containing exactly three u's. - Zerinvary Lajos, May 23 2008

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), this sequence (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n* Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
    
  • Maple
    seq(3^n*binomial(n+3, 3), n=0..30)]; # Zerinvary Lajos, Dec 21 2006
  • Mathematica
    CoefficientList[Series[1/(1-3x)^4,{x,0,30}],x] (* or *) LinearRecurrence[ {12,-54,108,-81},{1,12,90,540},30] (* Harvey P. Dale, Jul 27 2017 *)
  • PARI
    a(n) = 3^n*binomial(n+3, 3) \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [3^n*binomial(n+3,3) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+3, 3).
a(n) = A027465(n+4, 4).
G.f.: 1/(1 - 3*x)^4.
With three leading zeros, a(n) = 12*a(n-1) - 54*a(n-2) + 108*a(n-3) - 81*a(n-4), a(0) = a(1) = a(2) = 0, a(3) = 1. - Paul Barry, Mar 07 2003
With three leading zeros, C(n, 3)*3^(n-3) is the second binomial transform of C(n, 3). - Paul Barry, Jul 24 2003
E.g.f.: (1/2)*(2 + 18*x + 27*x^2 + 9*x^3)*exp(3*x). - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 36*log(3/2) - 27/2.
Sum_{n>=0} (-1)^n/a(n) = 144*log(4/3) - 81/2. (End)