A036217 Expansion of 1/(1-3*x)^5; 5-fold convolution of A000244 (powers of 3).
1, 15, 135, 945, 5670, 30618, 153090, 721710, 3247695, 14073345, 59108049, 241805655, 967222620, 3794488740, 14635885140, 55616363532, 208561363245, 772903875555, 2833980877035, 10291825290285, 37050571045026
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (15,-90,270,-405,243).
Crossrefs
Programs
-
Magma
[3^n* Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
-
Maple
seq(3^n*binomial(n+4,4), n=0..30); # Zerinvary Lajos, Jun 12 2008
-
Mathematica
CoefficientList[Series[1/(1-3x)^5,{x,0,30}],x] (* Harvey P. Dale, Jun 13 2017 *)
-
Sage
[3^n*binomial(n+4,4) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
Formula
a(n) = 3^n*binomial(n+4, 4) = 3^n*A000332(n+4).
a(n) = A027465(n+5, 5).
G.f.: 1/(1-3*x)^5.
E.g.f.: (1/8)*(8 +96*x +216*x^2 +144*x^3 +27*x^4)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 40 - 96*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 768*log(4/3) - 220. (End)
Comments