cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036217 Expansion of 1/(1-3*x)^5; 5-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 15, 135, 945, 5670, 30618, 153090, 721710, 3247695, 14073345, 59108049, 241805655, 967222620, 3794488740, 14635885140, 55616363532, 208561363245, 772903875555, 2833980877035, 10291825290285, 37050571045026
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n=5) of 4 objects: u, v, z, x with repetition allowed, containing exactly four (4) u's. Example: a(1)=15 because we have uuuuv uuuvu uuvuu uvuuu vuuuu uuuuz uuuzu uuzuu uzuuu zuuuu uuuux uuuxu uuxuu uxuuu xuuuu. - Zerinvary Lajos, Jun 12 2008

Crossrefs

Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), this sequence (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n* Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
  • Maple
    seq(3^n*binomial(n+4,4), n=0..30); # Zerinvary Lajos, Jun 12 2008
  • Mathematica
    CoefficientList[Series[1/(1-3x)^5,{x,0,30}],x] (* Harvey P. Dale, Jun 13 2017 *)
  • Sage
    [3^n*binomial(n+4,4) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+4, 4) = 3^n*A000332(n+4).
a(n) = A027465(n+5, 5).
G.f.: 1/(1-3*x)^5.
E.g.f.: (1/8)*(8 +96*x +216*x^2 +144*x^3 +27*x^4)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 40 - 96*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 768*log(4/3) - 220. (End)