cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036219 Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), this sequence (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+5,5), n=0..30); # Zerinvary Lajos, Jun 13 2008
  • Mathematica
    Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
    CoefficientList[Series[1/(1-3x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {18,-135,540,-1215,1458,-729},{1,18,189,1512,10206,61236},30] (* Harvey P. Dale, Jan 02 2022 *)
  • Sage
    [3^n*binomial(n+5,5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+5, 5).
a(n) = A027465(n+6, 6).
G.f.: 1/(1-3*x)^6.
E.g.f.: (1/40)*(40 + 600*x + 1800*x^2 + 1800*x^3 + 675*x^4 + 81*x^5)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 240*log(3/2) - 385/4.
Sum_{n>=0} (-1)^n/a(n) = 3840*log(4/3) - 4415/4. (End)