A036219 Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (18,-135,540,-1215,1458,-729).
Crossrefs
Programs
-
Magma
[3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq(3^n*binomial(n+5,5), n=0..30); # Zerinvary Lajos, Jun 13 2008
-
Mathematica
Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *) CoefficientList[Series[1/(1-3x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {18,-135,540,-1215,1458,-729},{1,18,189,1512,10206,61236},30] (* Harvey P. Dale, Jan 02 2022 *)
-
Sage
[3^n*binomial(n+5,5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
Formula
a(n) = 3^n*binomial(n+5, 5).
a(n) = A027465(n+6, 6).
G.f.: 1/(1-3*x)^6.
E.g.f.: (1/40)*(40 + 600*x + 1800*x^2 + 1800*x^3 + 675*x^4 + 81*x^5)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 240*log(3/2) - 385/4.
Sum_{n>=0} (-1)^n/a(n) = 3840*log(4/3) - 4415/4. (End)