A036222 Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
1, 27, 405, 4455, 40095, 312741, 2189187, 14073345, 84440070, 478493730, 2583866142, 13389124554, 66945622770, 324428787270, 1529449997130, 7035469986798, 31659614940591, 139674771796725, 605257344452475
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (27,-324,2268,-10206,30618,-61236,78732,-59049,19683).
Crossrefs
Programs
-
Magma
[3^n*Binomial(n+8, 8): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq(3^n*binomial(n+8,8), n=0..18); # Zerinvary Lajos, Jun 23 2008
-
Mathematica
Table[3^n*Binomial[n+8, 8], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *) CoefficientList[Series[1/(1-3x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{27,-324, 2268,-10206,30618,-61236,78732,-59049,19683}, {1,27,405,4455,40095,312741, 2189187,14073345,84440070}, 30] (* Harvey P. Dale, Jan 07 2016 *)
-
Sage
[3^n*binomial(n+8, 8) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
Formula
a(n) = 3^n*binomial(n+8, 8).
a(n) = A027465(n+9, 9).
G.f.: 1/(1-3*x)^9.
a(0)=1, a(1)=27, a(2)=405, a(3)=4455, a(4)=40095, a(5)=312741, a(6)=2189187, a(7)=14073345, a(8)=84440070, a(n) = 27*a(n-1) - 324*a(n-2) + 2268*a(n-3) - 10206*a(n-4) + 30618*a(n-5) - 61236*a(n-6) + 78732*a(n-7) - 59049*a(n-8) + 19683*a(n-9). - Harvey P. Dale, Jan 07 2016
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 43632/35 - 3072*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 393216*log(4/3) - 3959208/35. (End)
Comments