A027465
Cube of lower triangular normalized binomial matrix.
Original entry on oeis.org
1, 3, 1, 9, 6, 1, 27, 27, 9, 1, 81, 108, 54, 12, 1, 243, 405, 270, 90, 15, 1, 729, 1458, 1215, 540, 135, 18, 1, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 19683, 59049, 78732, 61236, 30618, 10206, 2268
Offset: 0
Example: n = 3 offers 2^3 = 8 different binary vectors (0,0,0), (0,0,1), ..., (1,1,0), (1,1,1). a(3,2) = 9 of the 2^4 = 64 pairs have overlap k = 2: (0,1,1)*(0,1,1) = (1,0,1)*(1,0,1) = (1,1,0)*(1,1,0) = (1,1,1)*(1,1,0) = (1,1,1)*(1,0,1) = (1,1,1)*(0,1,1) = (0,1,1)*(1,1,1) = (1,0,1)*(1,1,1) = (1,1,0)*(1,1,1) = 2.
For example, T(2,1)=6 since there are 6 subsets of {1,2,3,4} that have exactly 1 symmetric pair, namely, {1,4}, {2,3}, {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
The present sequence formatted as a triangular array:
1
3 1
9 6 1
27 27 9 1
81 108 54 12 1
243 405 270 90 15 1
729 1458 1215 540 135 18 1
2187 5103 5103 2835 945 189 21 1
6561 17496 20412 13608 5670 1512 252 24 1
...
A013610 formatted as a triangular array:
1
1 3
1 6 9
1 9 27 27
1 12 54 108 81
1 15 90 270 405 243
1 18 135 540 1215 1458 729
1 21 189 945 2835 5103 5103 2187
1 24 252 1512 5670 13608 20412 17496 6561
...
A099097 formatted as a square array:
1 0 0 0 0 0 0 0 0 0 0 ...
3 1 0 0 0 0 0 0 0 0 ...
9 6 1 0 0 0 0 0 0 ...
27 27 9 1 0 0 0 0 ...
81 108 54 12 1 0 0 ...
243 405 270 90 15 1 ...
729 1458 1215 540 135 ...
2187 5103 5103 2835 ...
6561 17496 20412 ...
19683 59049 ...
59049 ...
Cf.
A000244,
A007318,
A013610,
A013610,
A099097,
A027471,
A027472,
A036216,
A036217,
A036219,
A036220,
A036221,
A036222,
A036223.
-
a027465 n k = a027465_tabl !! n !! k
a027465_row n = a027465_tabl !! n
a027465_tabl = iterate (\row ->
zipWith (+) (map (* 3) (row ++ [0])) (map (* 1) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013
-
for i from 0 to 12 do seq(binomial(i, j)*3^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Nov 25 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 3^(n-1)); # Peter Luschny, Oct 09 2022
-
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 19 2012 *)
-
{T(n, k) = polcoeff( (3 + x)^n, k)}; /* Michael Somos, Feb 14 2002 */
A036216
Expansion of 1/(1 - 3*x)^4; 4-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 12, 90, 540, 2835, 13608, 61236, 262440, 1082565, 4330260, 16888014, 64481508, 241805655, 892820880, 3252418920, 11708708112, 41712272649, 147219785820, 515269250370, 1789882659180, 6175095174171, 21171754882872
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2), this sequence (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n* Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
-
seq(3^n*binomial(n+3, 3), n=0..30)]; # Zerinvary Lajos, Dec 21 2006
-
CoefficientList[Series[1/(1-3x)^4,{x,0,30}],x] (* or *) LinearRecurrence[ {12,-54,108,-81},{1,12,90,540},30] (* Harvey P. Dale, Jul 27 2017 *)
-
a(n) = 3^n*binomial(n+3, 3) \\ Charles R Greathouse IV, Oct 03 2016
-
[3^n*binomial(n+3,3) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A013610
Triangle of coefficients in expansion of (1+3*x)^n.
Original entry on oeis.org
1, 1, 3, 1, 6, 9, 1, 9, 27, 27, 1, 12, 54, 108, 81, 1, 15, 90, 270, 405, 243, 1, 18, 135, 540, 1215, 1458, 729, 1, 21, 189, 945, 2835, 5103, 5103, 2187, 1, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 1, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0
Triangle begins
1;
1, 3;
1, 6, 9;
1, 9, 27, 27;
1, 12, 54, 108, 81;
1, 15, 90, 270, 405, 243;
1, 18, 135, 540, 1215, 1458, 729;
1, 21, 189, 945, 2835, 5103, 5103, 2187;
Diagonals of the triangle:
A000244 (k=n),
A027471 (k=n-1),
A027472 (k=n-2),
A036216 (k=n-3),
A036217 (k=n-4),
A036219 (k=n-5),
A036220 (k=n-6),
A036221 (k=n-7),
A036222 (k=n-8),
A036223 (k=n-9),
A172362 (k=n-10).
-
a013610 n k = a013610_tabl !! n !! k
a013610_row n = a013610_tabl !! n
a013610_tabl = iterate (\row ->
zipWith (+) (map (* 1) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013
-
[3^k*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 19 2021
-
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+3*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 25 2015
-
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 4], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = 3T[n-1, k-1]+T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Oliver Seipel, Jan 26 2025 *)
-
{T(n, k) = polcoeff((1 + 3*x)^n, k)}; /* Michael Somos, Feb 14 2002 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,1], [1,1]]; /* note triple [1,1] */
/* Joerg Arndt, Jul 01 2011 */
-
flatten([[3^k*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021
A036217
Expansion of 1/(1-3*x)^5; 5-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 15, 135, 945, 5670, 30618, 153090, 721710, 3247695, 14073345, 59108049, 241805655, 967222620, 3794488740, 14635885140, 55616363532, 208561363245, 772903875555, 2833980877035, 10291825290285, 37050571045026
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3), this sequence (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n* Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
-
seq(3^n*binomial(n+4,4), n=0..30); # Zerinvary Lajos, Jun 12 2008
-
CoefficientList[Series[1/(1-3x)^5,{x,0,30}],x] (* Harvey P. Dale, Jun 13 2017 *)
-
[3^n*binomial(n+4,4) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A036219
Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4), this sequence (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+5,5), n=0..30); # Zerinvary Lajos, Jun 13 2008
-
Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
CoefficientList[Series[1/(1-3x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {18,-135,540,-1215,1458,-729},{1,18,189,1512,10206,61236},30] (* Harvey P. Dale, Jan 02 2022 *)
-
[3^n*binomial(n+5,5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A036220
Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 21, 252, 2268, 17010, 112266, 673596, 3752892, 19702683, 98513415, 472864392, 2192371272, 9865670724, 43257171636, 185387878440, 778629089448, 3211844993973, 13036312034361, 52145248137444, 205836505805700, 802762372642230, 3096369151620030
Offset: 0
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5), this sequence (m=6),
A036221 (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+6,6), n=0..20); # Zerinvary Lajos, Jun 16 2008
-
Table[3^n*Binomial[n+6, 6], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
-
[3^n*binomial(n+6,6) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
A036221
Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 24, 324, 3240, 26730, 192456, 1250964, 7505784, 42220035, 225173520, 1148384952, 5637526128, 26778249108, 123591918960, 556163635320, 2447119995408, 10553204980197, 44695926974952, 186233029062300
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (24,-252,1512,-5670,13608,-20412,17496,-6561).
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6), this sequence (m=7),
A036222 (m=8),
A036223 (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+7, 7): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+7,7), n=0..30); # Zerinvary Lajos, Jun 23 2008
-
Table[3^n*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
-
[3^n*binomial(n+7, 7) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
A036223
Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).
Original entry on oeis.org
1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460, 5454828522, 29753610120, 156206453130, 793048146660, 3908594437110, 18761253298128, 87943374834975, 403504896301650, 1815772033357425
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049).
Sequences of the form 3^n*binomial(n+m, m):
A000244 (m=0),
A027471 (m=1),
A027472 (m=2),
A036216 (m=3),
A036217 (m=4),
A036219 (m=5),
A036220 (m=6),
A036221 (m=7),
A036222 (m=8), this sequence (m=9),
A172362 (m=10).
-
[3^n*Binomial(n+9, 9): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(3^n*binomial(n+9, 9), n=0..20); # Zerinvary Lajos, Jul 02 2008
-
Table[3^n*Binomial[n+9,9], {n,0,30}] (* G. C. Greubel, May 18 2021 *)
CoefficientList[Series[1/(1-3x)^10,{x,0,30}],x] (* or *) LinearRecurrence[ {30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049},{1,30,495,5940,57915,486486,3648645,25019280,159497910,956987460},30] (* Harvey P. Dale, Jan 16 2022 *)
-
[3^n*binomial(n+9,9) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
A038221
Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.
Original entry on oeis.org
1, 3, 3, 9, 18, 9, 27, 81, 81, 27, 81, 324, 486, 324, 81, 243, 1215, 2430, 2430, 1215, 243, 729, 4374, 10935, 14580, 10935, 4374, 729, 2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187, 6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561
Offset: 0
Triangle begins as:
1;
3, 3;
9, 18, 9;
27, 81, 81, 27;
81, 324, 486, 324, 81;
243, 1215, 2430, 2430, 1215, 243;
729, 4374, 10935, 14580, 10935, 4374, 729;
2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187;
6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Columns k:
A000244 (k=0), 3*
A027471 (k=1), 3^2*
A027472 (k=2), 3^3*
A036216 (k=3), 3^4*
A036217 (k=4), 3^5*
A036219 (k=5), 3^6*
A036220 (k=6), 3^7*
A036221 (k=7), 3^8*
A036222 (k=8), 3^9*
A036223 (k=9), 3^10*
A172362 (k=10).
-
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*3^(i-j)*3^j))); # Muniru A Asiru, Jul 23 2018
-
a038221 n = a038221_list !! n
a038221_list = concat $ iterate ([3,3] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
[3^n*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2022
-
(* programs from Zagros Lalo, Jul 23 2018 *)
t[0, 0]=1; t[n_, k_]:= t[n, k]= If[n<0 || k<0, 0, 3 t[n-1, k] + 3 t[n-1, k-1]]; Table[t[n, k], {n,0,10}, {k,0,n}]//Flatten
Table[CoefficientList[Expand[3^n *(1+x)^n], x], {n,0,10}]//Flatten
Table[3^n Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* End *)
-
def A038221(n,k): return 3^n*binomial(n,k)
flatten([[A038221(n,k) for k in range(n+1)] for n in range(10)]) # G. C. Greubel, Oct 17 2022
A172362
a(n) = binomial(n+10, 10)*3^n.
Original entry on oeis.org
1, 33, 594, 7722, 81081, 729729, 5837832, 42532776, 287096238, 1818276174, 10909657044, 62482581252, 343654196886, 1824010737318, 9380626649064, 46903133245320, 228652774570935, 1089463220014455, 5084161693400790
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (33,-495,4455,-26730,112266,-336798,721710,-1082565,1082565,-649539,177147).
-
[3^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(binomial(n+10, 10)*3^n, n=0..30);
-
Table[Binomial[n + 10, 10]*3^n, {n, 0, 20}]
Showing 1-10 of 11 results.
Comments