cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A257620 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 36, 9, 27, 297, 297, 27, 81, 2106, 5346, 2106, 81, 243, 13851, 73386, 73386, 13851, 243, 729, 87480, 868239, 1761264, 868239, 87480, 729, 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187, 6561, 3293622, 95843088, 578903274, 1024762590, 578903274, 95843088, 3293622, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,      3,        9,         27,           81,            243, ...;
    3,     36,      297,       2106,        13851,          87480, ...;
    9,    297,     5346,      73386,       868239,        9388791, ...;
   27,   2106,    73386,    1761264,     34158753,      578903274, ...;
   81,  13851,   868239,   34158753,   1024762590,    25791697782, ...;
  243,  87480,  9388791,  578903274,  25791697782,   928501120152, ...;
  729, 540189, 95843088, 8959544136, 575025893586, 28788563928042, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     36,       9;
    27,    297,     297,       27;
    81,   2106,    5346,     2106,       81;
   243,  13851,   73386,    73386,    13851,     243;
   729,  87480,  868239,  1761264,   868239,   87480,    729;
  2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Magma
    A257620:= func< n,k | 3^n*EulerianNumber(n+1, k) >;
    [A257620(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,3,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
  • Python
    from sage.all import *
    from sage.combinat.combinat import eulerian_number
    def A257620(n,k): return pow(3,n)*eulerian_number(n+1,k)
    print(flatten([[A257620(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257620(n,k): return t(n-k,k,3,3)
    flatten([[A257620(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
    

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
Sum_{k=0..n} T(n, k) = A034001(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
T(n, k) = 3^n*A008292(n, k). - G. C. Greubel, Jan 17 2025

A257611 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 30, 9, 27, 213, 213, 27, 81, 1308, 2982, 1308, 81, 243, 7431, 32646, 32646, 7431, 243, 729, 40314, 310263, 587628, 310263, 40314, 729, 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187, 6561, 1099704, 22059036, 113360904, 191433990, 113360904, 22059036, 1099704, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 06 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,      3,        9,         27,          81,           243, ...;
    3,     30,      213,       1308,        7431,         40314, ...;
    9,    213,     2982,      32646,      310263,       2695923, ...;
   27,   1308,    32646,     587628,     8701545,     113360904, ...;
   81,   7431,   310263,    8701545,   191433990,    3579465642, ...;
  243,  40314,  2695923,  113360904,  3579465642,   93066106692, ...;
  729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     30,       9;
    27,    213,     213,      27;
    81,   1308,    2982,    1308,      81;
   243,   7431,   32646,   32646,    7431,     243;
   729,  40314,  310263,  587628,  310263,   40314,    729;
  2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
  • PARI
    f(x) = 2*x + 3;
    T(n, k) = t(n-k, k);
    t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
    
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257611(n,k): return t(n-k,k,2,3)
    flatten([[A257611(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 2*n + 3.
Sum_{k=0..n} T(n, k) = A051578(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A257180 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.

Original entry on oeis.org

1, 3, 3, 9, 24, 9, 27, 141, 141, 27, 81, 726, 1410, 726, 81, 243, 3471, 11406, 11406, 3471, 243, 729, 15828, 81327, 136872, 81327, 15828, 729, 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187, 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561, 19683, 1277619, 19489380, 105311556, 237144642, 237144642, 105311556, 19489380, 1277619, 19683
Offset: 0

Views

Author

Dale Gerdemann, Apr 17 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,     3,       9,        27,         81,         243, ... A000244;
    3,    24,     141,       726,       3471,       15828, ...;
    9,   141,    1410,     11406,      81327,      533259, ...;
   27,   726,   11406,    136872,    1390521,    12609198, ...;
   81,  3471,   81327,   1390521,   19467294,   237144642, ...;
  243, 15828,  533259,  12609198,  237144642,  3794314272, ...;
  729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     24,       9;
    27,    141,     141,       27;
    81,    726,    1410,      726,       81;
   243,   3471,   11406,    11406,     3471,      243;
   729,  15828,   81327,   136872,    81327,    15828,     729;
  2187,  69873,  533259,  1390521,  1390521,   533259,   69873,   2187;
  6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    f[n_]:= n+3;
    t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
    T[n_, k_]= t[n-k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
  • PARI
    f(x) = x + 3;
    T(n, k) = t(n-k, k);
    t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);}
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Apr 23 2015
    
  • Sage
    def f(n): return n+3
    @CachedFunction
    def t(n,k):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
    def A257627(n,k): return t(n-k,k)
    flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022

Formula

T(n,k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
Sum_{k=0..n} T(n, k) = A001725(n+5).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A257621 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 42, 9, 27, 393, 393, 27, 81, 3156, 8646, 3156, 81, 243, 23631, 142446, 142446, 23631, 243, 729, 171006, 2015895, 4273380, 2015895, 171006, 729, 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187, 6561, 8584872, 320039388, 2136524184, 3891302790, 2136524184, 320039388, 8584872, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,       3,         9,          27,            81, ...;
    3,      42,       393,        3156,         23631, ...;
    9,     393,      8646,      142446,       2015895, ...;
   27,    3156,    142446,     4273380,     102402705, ...;
   81,   23631,   2015895,   102402705,    3891302790, ...;
  243,  171006,  26107983,  2136524184,  123074809242, ...;
  729, 1216725, 320039388, 40688926236, 3437022383970, ...;
Triangle T(n,k) begins as:
     1;
     3,       3;
     9,      42,        9;
    27,     393,      393,        27;
    81,    3156,     8646,      3156,        81;
   243,   23631,   142446,    142446,     23631,      243;
   729,  171006,  2015895,   4273380,   2015895,   171006,     729;
  2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187;
		

Crossrefs

Cf. A000407 (row sums), A142459, A257612.
Similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,4,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257621(n,k): return t(n-k,k,4,3)
    flatten([[A257621(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
Sum_{k=0..n} T(n, k) = A000407(n).
From G. C. Greubel, Mar 01 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A257623 Triangle read by rows: T(n,k) = t(n-k, k), where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 5*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 48, 9, 27, 501, 501, 27, 81, 4494, 13026, 4494, 81, 243, 37815, 250230, 250230, 37815, 243, 729, 309324, 4122735, 9008280, 4122735, 309324, 729, 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187
Offset: 0

Views

Author

Dale Gerdemann, May 10 2015

Keywords

Examples

			Array, t(n,k), begins as:
    1,       3,         9,           27,             81, ... A000244;
    3,      48,       501,         4494,          37815, ...;
    9,     501,     13026,       250230,        4122735, ...;
   27,    4494,    250230,      9008280,      256971945, ...;
   81,   37815,   4122735,    256971945,    11820709470, ...;
  243,  309324,  62256627,   6368680566,   450199373658, ...;
  729, 2498649, 891791568, 144065371932, 15108742867890, ...;
Triangle, T(n,k), begins as:
     1;
     3,       3;
     9,      48,        9;
    27,     501,      501,        27;
    81,    4494,    13026,      4494,        81;
   243,   37815,   250230,    250230,     37815,      243;
   729,  309324,  4122735,   9008280,   4122735,   309324,     729;
  2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+ q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k,k,p,q];
    Table[T[n,k,5,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2022 *)
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257623(n,k): return t(n-k,k,5,3)
    flatten([[A257623(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 27 2022

Formula

T(n,k) = t(n-k, k) where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 3.
Sum_{k=0..n} T(n, k) = A008548(n).
From G. C. Greubel, Feb 27 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A257625 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 54, 9, 27, 621, 621, 27, 81, 6156, 18630, 6156, 81, 243, 57591, 408726, 408726, 57591, 243, 729, 526338, 7685847, 17166492, 7685847, 526338, 729, 2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187
Offset: 0

Views

Author

Dale Gerdemann, May 10 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,       3,          9,           27,             81, ...;
    3,      54,        621,         6156,          57591, ...;
    9,     621,      18630,       408726,        7685847, ...;
   27,    6156,     408726,     17166492,      568014201, ...;
   81,   57591,    7685847,    568014201,    30672766854, ...;
  243,  526338,  132656859,  16305974568,  1366261865802, ...;
  729, 4765473, 2175706332, 427278012876, 53552912878818, ...;
Triangle T(n,k) begins as:
     1;
     3,       3;
     9,      54,         9;
    27,     621,       621,        27;
    81,    6156,     18630,      6156,        81;
   243,   57591,    408726,    408726,     57591,       243;
   729,  526338,   7685847,  17166492,   7685847,    526338,     729;
  2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187;
		

Crossrefs

Cf. A047058 (row sums), A142461, A257616.
See similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,6,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257625(n,k): return t(n-k,k,6,3)
    flatten([[A257625(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3.
Sum_{k=0..n} T(n, k) = A047058(n).
From G. C. Greubel, Mar 01 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A257627 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(x) = 7*x + 3.

Original entry on oeis.org

1, 3, 3, 9, 60, 9, 27, 753, 753, 27, 81, 8178, 25602, 8178, 81, 243, 84291, 631506, 631506, 84291, 243, 729, 852144, 13348623, 30312288, 13348623, 852144, 729, 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187
Offset: 0

Views

Author

Dale Gerdemann, May 10 2015

Keywords

Examples

			Array t(n, k) begins as:
    1,       3,          9,            27,              81, ... A000244;
    3,      60,        753,          8178,           84291, ...;
    9,     753,      25602,        631506,        13348623, ...;
   27,    8178,     631506,      30312288,      1141302225, ...;
   81,   84291,   13348623,    1141302225,     70760737950, ...;
  243,  852144,  259308063,   37244959794,   3608891348622, ...;
  729, 8554245, 4793178096, 1109572049376, 161806374029202, ...;
Triangle, T(n, k) begins as:
     1;
     3,       3;
     9,      60,         9;
    27,     753,       753,         27;
    81,    8178,     25602,       8178,         81;
   243,   84291,    631506,     631506,      84291,       243;
   729,  852144,  13348623,   30312288,   13348623,    852144,     729;
  2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187;
		

Crossrefs

Cf. A000244, A038221, A049209 (row sums), A142462.
See similar sequences listed in A256890.

Programs

  • Mathematica
    f[n_]:= 7*n+3;
    t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
    T[n_, k_]= t[n-k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
  • Sage
    def f(n): return 7*n+3
    @CachedFunction
    def t(n,k):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
    def A257627(n,k): return t(n-k,k)
    flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 3.
Sum_{k=0..n} T(n, k) = A049209(n).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A038220 Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.

Original entry on oeis.org

1, 3, 2, 9, 12, 4, 27, 54, 36, 8, 81, 216, 216, 96, 16, 243, 810, 1080, 720, 240, 32, 729, 2916, 4860, 4320, 2160, 576, 64, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 6561, 34992, 81648, 108864, 90720, 48384, 16128, 3072, 256
Offset: 0

Views

Author

Keywords

Comments

Row sums give A000351; central terms give A119309. - Reinhard Zumkeller, May 14 2006
Triangle of coefficients in expansion of (3 + 2x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 23 2018

Examples

			Triangle begins:
   1;
   3,   2;
   9,  12,   4;
  27,  54,  36,   8;
  81, 216, 216,  96,  16;
  ...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Programs

  • Haskell
    a038220 n k = a038220_tabl !! n !! k
    a038220_row n = a038220_tabl !! n
    a038220_tabl = iterate (\row ->
       zipWith (+) (map (* 3) (row ++ [0])) (map (* 2) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013, Apr 02 2011
    
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 t[n - 1, k] + 2 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[ Expand[(3 + 2x)^n], x], {n, 0, 9}] // Flatten  (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[Binomial[i, j] *3^(i - j)*2^j, x], {i, 0, 9}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
  • PARI
    T(i,j)=binomial(i,j)*3^(i-j)*2^j \\ Charles R Greathouse IV, Jul 19 2016

Formula

T(n,k) = A007318(n,k) * A036561(n,k). - Reinhard Zumkeller, May 14 2006
G.f.: 1/(1 - 3*x - 2*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(0,0) = 1; T(n,k) = 3 T(n-1,k) + 2 T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 23 2018

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)
Showing 1-10 of 11 results. Next