cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036223 Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 30, 495, 5940, 57915, 486486, 3648645, 25019280, 159497910, 956987460, 5454828522, 29753610120, 156206453130, 793048146660, 3908594437110, 18761253298128, 87943374834975, 403504896301650, 1815772033357425
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of n-permutations (n >= 9) of 4 objects: u, v, z, x with repetition allowed, containing exactly nine (9) u's. - Zerinvary Lajos, Jul 02 2008

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), this sequence (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+9, 9): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+9, 9), n=0..20); # Zerinvary Lajos, Jul 02 2008
  • Mathematica
    Table[3^n*Binomial[n+9,9], {n,0,30}] (* G. C. Greubel, May 18 2021 *)
    CoefficientList[Series[1/(1-3x)^10,{x,0,30}],x] (* or *) LinearRecurrence[ {30,-405,3240,-17010,61236,-153090,262440,-295245,196830,-59049},{1,30,495,5940,57915,486486,3648645,25019280,159497910,956987460},30] (* Harvey P. Dale, Jan 16 2022 *)
  • Sage
    [3^n*binomial(n+9,9) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 3^n*binomial(n+9, 9).
a(n) = A027465(n+10, 10).
G.f.: 1/(1-3*x)^10.
E.g.f.: (4480 + 120960*x + 725760*x^2 + 1693440*x^3 + 1905120*x^4 + 1143072*x^5 + 381024*x^6 + 69984*x^7 + 6561*x^8 + 243*x^9)*exp(3*x)/4480. - G. C. Greubel, May 18 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 6912*log(3/2) - 784431/280.
Sum_{n>=0} (-1)^n/a(n) = 1769472*log(4/3) - 142532433/280. (End)