cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132166 A convolution triangle of numbers obtained from A036224.

Original entry on oeis.org

1, 21, 1, 336, 42, 1, 4536, 1113, 63, 1, 54432, 23184, 2331, 84, 1, 598752, 412272, 65205, 3990, 105, 1, 6158592, 6531840, 1518048, 139860, 6090, 126, 1, 60046272, 94618368, 30912840, 4010769, 256410, 8631, 147, 1, 560431872, 1274921856
Offset: 1

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

Signed version: (-1)^(n-m)*a(n, m) := s1(7; n,m).
a(n,m) := s1p(7; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle), A030523=s1p(3), A036068=s1p(4), A030526=s1p(5) and A030527=s1p(6).

Examples

			{1};{21,1};{336,42,1};{4536,1113,63,1};...; Row polynomial s(3,x)=336*x+42*x^2+x^3.
		

Crossrefs

Related triangle A134141 (S1p(7)).
Cf. A036224(n-1), n>=1 (first column). A132167 (row sums). A132168 (alternating row sums).

Formula

a(n, m) = 6*(6*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-6*x)^6)/(36*(1-6*x)^6))^m.

A053110 Expansion of (-1 + 1/(1-7*x)^7)/(49*x); related to A036226.

Original entry on oeis.org

1, 28, 588, 10290, 158466, 2218524, 28840812, 353299947, 4121832715, 46164526408, 499416240232, 5243870522436, 53648829191076, 536488291910760, 5257585260725448, 50604258134482437, 479252091744216021
Offset: 0

Keywords

Crossrefs

Programs

  • Magma
    [7^(n-1)*Binomial(n+7, 6): n in [0..30]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    CoefficientList[Series[(-1+1/(1-7x)^7)/(49x),{x,0,30}],x] (* or *) LinearRecurrence[{49,-1029,12005,-84035,352947,-823543,823543},{1,28,588,10290,158466,2218524,28840812},30] (* Harvey P. Dale, Jun 03 2015 *)
    Table[7^(n-1)*Binomial[n+7, 6], {n,0,30}] (* G. C. Greubel, Aug 16 2018 *)
  • PARI
    vector(30,n,n--; 7^(n-1)*binomial(n+7, 6)) \\ G. C. Greubel, Aug 16 2018
    
  • Sage
    [lucas_number2(n, 7, 0)*binomial(n,6)/7^8 for n in range(7, 24)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 7^(n-1)*binomial(n+7, 6);
G.f.: (-1 + (1-7*x)^(-7))/(x*7^2).

A053113 Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.

Original entry on oeis.org

1, 55, 2200, 71500, 2002000, 50050000, 1144000000, 24310000000, 486200000000, 9237800000000, 167960000000000, 2939300000000000, 49742000000000000, 817190000000000000, 13075040000000000000, 204297500000000000000
Offset: 0

Keywords

Comments

This is the tenth member of the k-family of sequences a(k,n) := k^(n-1)*binomial(n+k,k-1) starting with A000012 (powers of 1), A001792, A036068, A036070, A036083, A036224, A053110-113 for k=1..10.

Programs

  • Magma
    [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
    LinearRecurrence[{100,-4500,120000,-2100000,25200000,-210000000,1200000000,-4500000000,10000000000,-10000000000},{1,55,2200,71500,2002000,50050000,1144000000,24310000000,486200000000,9237800000000},20] (* Harvey P. Dale, Jul 30 2025 *)
  • PARI
    vector(30,n,n--; 10^(n-1)*binomial(n+10, 9)) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = 10^(n-1)*binomial(n+10, 9).
G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).
Showing 1-3 of 3 results.