cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046195 Indices of heptagonal numbers (A000566) which are also squares (A000290).

Original entry on oeis.org

1, 6, 49, 961, 8214, 70225, 1385329, 11844150, 101263969, 1997643025, 17079255654, 146022572641, 2880599856289, 24628274808486, 210564448483921, 4153822995125281, 35513955194580726, 303633788691241009, 5989809878370798481, 51211098762310597974
Offset: 1

Views

Author

Keywords

Comments

(10 * a(n) - 3)^2 - 40 * (A046196(n))^2 = 9. - Ant King, Nov 12 2011
Also numbers n such that the n-th heptagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also indices of heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015
Also nonnegative integers y in the solutions to 2*x^2-5*y^2+4*x+3*y+2+2 = 0, the corresponding values of x being A251927. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do m:=sqrt((5*n^2-3*n)/2):
    if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
  • Mathematica
    LinearRecurrence[{1 ,0, 1442, -1442, 0, -1, 1}, {1, 6, 49, 961, 8214, 70225, 1385329}, 17] (* Ant King, Nov 12 2011 *)

Formula

From Paul Weisenhorn, May 01 2009: (Start)
Pell equations: r^2-10*s^2=1 with solution (19,6)
(10*n-3)^2-10*(2*m)^2=9; basic solutions: (7,-2); (7,+2)((57,18);
with x=10*n-3; y=2*m; A=(19+6*sqrt(10))^2; B=(19-6*sqrt(10))^2 one get
x(3*k)+sqrt(10)*y(3*k)=(7-2*sqrt(10))*A^k;
x(3*k+1)+sqrt(10)*y(3*k+1)=(7+2*sqrt(10))*A^k;
x(3*k+2)+sqrt(10)*y(3*k+2)=(57+18*sqrt(10))*A^k;
with the eigenvalues A=721+228*sqrt(10); B=721-228*sqrt(10)
one get the recurrences with 1442=4*19*19-2
x(k+6)=1442*x(k+3)-x(k); y(k+6)=1442*y(k+3)-y(k);
m(k+6)=1442*m(k+3)-m(k); n(k+6)=1442*n(k+3)-n(k)-432;
and the explicit formulas
x(3*k+1)=(7*(A^k+B^k)+2*sqrt(10)*(A^k-B^k))/2;
x(3*k+2)=(57*(A^k+B^k)+18*sqrt(10)*(A^k-B^k))/2;
x(3*k)=(7*(A^k+B^k)-2*sqrt(10)*(A^k-B^k))/2;
y(3*k+1)=(7*(A^k-B^k)/sqrt(10)+2*(A^k+B^k)/2;
y(3*k+2)=(57*(A^k-B^k)/sqrt(10)+18*(A^k+B^k))/2;
y(3*k)=(7*(A^k-B^k)/sqrt(10)-2*(A^k+B^k))/2;
n(k)=(x(k)+3)/10; m(k)=y(k)/2;
(End)
a(n) = +a(n-1) +1442*a(n-3) -1442*a(n-4) -a(n-6) +a(n-7). G.f.: -x*(1+5*x+43*x^2-530*x^3+43*x^4+5*x^5+x^6) / ( (x-1)*(x^6-1442*x^3+1) ). - R. J. Mathar, Aug 01 2010
a(n) = 1442*a(n-3) - a(n-6) - 432. - Ant King, Nov 12 2011

Extensions

More terms from Colin Barker, Dec 11 2014

A036253 Numerator of fraction equal to the continued fraction [ 3, 1, 4, 1, 5... ] (first n digits of Pi).

Original entry on oeis.org

3, 4, 19, 23, 134, 1229, 2592, 16781, 86497, 276272, 1467857, 12019128, 109640009, 779499191, 7125132728, 22154897375, 51434927478, 176459679809, 1463112365950, 6028909143609, 37636567227604, 81302043598817, 525448828820506, 2183097358880841
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A036254.

Programs

  • Mathematica
    nn=30;With[{pidg=RealDigits[Pi,10,nn][[1]]},Numerator[Table[ FromContinuedFraction[ Take[pidg,n]],{n,nn}]]] (* Harvey P. Dale, Oct 08 2012 *)

Extensions

More terms from Harvey P. Dale, Oct 08 2012

A249944 Numerator of fraction equal to the finite continued fraction [2,7,1,8,2,...] (first n digits of e).

Original entry on oeis.org

2, 15, 17, 151, 319, 2703, 3022, 26879, 56780, 481119, 1981256, 10387399, 95467847, 10387399, 137017443, 695474614, 1527966671, 5279374627, 27924839806, 89053894045, 562248204076, 89053894045, 740355992166, 6011901831373, 42823668811777, 177306577078481
Offset: 1

Views

Author

Harvey P. Dale, Dec 07 2014

Keywords

Examples

			2 + 1/7 = 15/7 defines a(2).
2 + 1/(7 + 1/1) = 17/8 defines a(3).
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pd},pd=RealDigits[E,10,nn][[1]];Table[Numerator[ FromContinuedFraction[Take[pd,n]]],{n,nn}]]

A251626 Denominator of fraction equal to the continued fraction [2,7,1,8,2,...] (first n digits of e).

Original entry on oeis.org

1, 7, 8, 71, 150, 1271, 1421, 12639, 26699, 226231, 931623, 4884346, 44890737, 4884346, 64428121, 327024951, 718478023, 2482459020, 13130773123, 41874778389, 264379443457, 41874778389, 348129000235, 2826906780269, 20136476462118, 83372812628741
Offset: 1

Views

Author

Harvey P. Dale, Dec 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pd},pd=RealDigits[E,10,nn][[1]];Table[Denominator[ FromContinuedFraction[Take[pd,n]]],{n,nn}]]
Showing 1-4 of 4 results.