A036303 Composite numbers whose prime factors contain no digits other than 1 and 3.
9, 27, 33, 39, 81, 93, 99, 117, 121, 143, 169, 243, 279, 297, 339, 341, 351, 363, 393, 403, 429, 507, 729, 837, 891, 933, 939, 961, 993, 1017, 1023, 1053, 1089, 1179, 1209, 1243, 1287, 1331, 1441, 1469, 1521, 1573, 1703, 1859, 2187, 2197, 2511, 2673, 2799
Offset: 1
Examples
The composite 117 = 3^2 * 13 is in the sequence as the digits of the prime factors are either 1 or 3. - _David A. Corneth_, Oct 17 2020
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
- Index entries for sequences related to prime factors.
Programs
-
Mathematica
Select[Range[3000],CompositeQ[#]&&SubsetQ[{1,3},Union[Flatten[IntegerDigits/@FactorInteger[#][[;;,1]]]]]&] (* Harvey P. Dale, Jan 08 2025 *)
-
Python
from sympy import factorint def ok(n): f = factorint(n) return sum(f.values()) > 1 and all(set(str(p)) <= set("13") for p in f) print(list(filter(ok, range(2800)))) # Michael S. Branicky, Sep 27 2021
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A020451} (p/(p - 1)) - Sum_{p in A020451} 1/p - 1 = 0.3374936085... . - Amiram Eldar, May 18 2022
Comments