cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036302 Composite numbers k such that the digits of the prime factors of k are either 1 or 2.

Original entry on oeis.org

4, 8, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 422, 484, 512, 704, 844, 968, 1024, 1331, 1408, 1688, 1936, 2048, 2321, 2662, 2816, 3376, 3872, 4096, 4222, 4442, 4642, 5324, 5632, 6752, 7744, 8192, 8444, 8884, 9284, 10648, 11264, 13504, 14641, 15488, 16384
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020450. - Michel Marcus, Oct 02 2020

Examples

			422 = 2 * 211 is in the sequence as the digits of its prime factors 2 and 211 are either 1 or 2. - _David A. Corneth_, Sep 26 2020
		

Crossrefs

Cf. A003596 (a subsequence), A020450, A036303-A036325.

Programs

  • Magma
    [k:k in [2..15000]|  not IsPrime(k) and forall{a: a in PrimeDivisors(k)|Intseq(a) subset {1,2}}]; // Marius A. Burtea, Oct 08 2019
  • Mathematica
    Select[Range[2,14650],!PrimeQ[#] && Complement[Flatten[IntegerDigits[First/@FactorInteger[#]]],{1,2}]=={} &] (* Jayanta Basu, May 25 2013 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020450} p/(p-1) - Sum_{p in A020450} 1/p - 1 = 0.616325... - Amiram Eldar, Oct 14 2020

A036930 Smallest n-digit prime containing only digits 1 and 3, or 0 if no such prime exists.

Original entry on oeis.org

3, 11, 113, 3313, 11113, 113111, 1111333, 11111131, 111111113, 1111113313, 11111111113, 111111133333, 1111111111333, 11111111113133, 111111111113113, 1111111111313131, 11111111111131333, 111111111111111131
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{1,3},n],PrimeQ,1],{n,18}]] (* Harvey P. Dale, Jul 23 2012 *)

Extensions

Corrected by Harvey P. Dale, Jul 23 2012
Showing 1-2 of 2 results.