cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A036325 Composite numbers whose prime factors have no digits other than 8 and 9.

Original entry on oeis.org

7921, 704969, 800911, 8001011, 8009021, 8802011, 8810911, 8899021, 62742241, 71281079, 79120021, 80001121, 80982001, 88109911, 88910021, 712089979, 712802869, 783378979, 784171079, 791120021, 791200121, 792012869, 800020021, 800109911, 800901121, 800991011, 809001101, 809811011, 880111121
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020472. - David A. Corneth, Apr 30 2018

Examples

			7921 is in the sequence because it's composite and its only prime factor is 89, only having digits 8 or 9. - _David A. Corneth_, Apr 30 2018
		

Crossrefs

Programs

  • Maple
    N:= 9: # to get all terms of <= N digits
    R:= 10^N: G:= {9}: S:= {1}:
    for n from 1 to N-1 do
      G:= map(t -> (t+8*10^n,t+9*10^n), G);
      newprimes:= select(isprime, G);
      for p in newprimes do
        S:= map(s -> seq(s*p^i,i=0..floor(log[p](R/s))), S)
      od
    od:
    sort(convert(remove(isprime, S minus {1}),list)); # Robert Israel, Apr 30 2018

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020472} (p/(p - 1)) - Sum_{p in A020472} 1/p - 1 = 0.0001296249159... . - Amiram Eldar, May 22 2022

Extensions

More terms from Robert Israel, Apr 29 2018

A036303 Composite numbers whose prime factors contain no digits other than 1 and 3.

Original entry on oeis.org

9, 27, 33, 39, 81, 93, 99, 117, 121, 143, 169, 243, 279, 297, 339, 341, 351, 363, 393, 403, 429, 507, 729, 837, 891, 933, 939, 961, 993, 1017, 1023, 1053, 1089, 1179, 1209, 1243, 1287, 1331, 1441, 1469, 1521, 1573, 1703, 1859, 2187, 2197, 2511, 2673, 2799
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020451. - David A. Corneth, Oct 09 2020

Examples

			The composite 117 = 3^2 * 13 is in the sequence as the digits of the prime factors are either 1 or 3. - _David A. Corneth_, Oct 17 2020
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],CompositeQ[#]&&SubsetQ[{1,3},Union[Flatten[IntegerDigits/@FactorInteger[#][[;;,1]]]]]&] (* Harvey P. Dale, Jan 08 2025 *)
  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) > 1 and all(set(str(p)) <= set("13") for p in f)
    print(list(filter(ok, range(2800)))) # Michael S. Branicky, Sep 27 2021

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020451} (p/(p - 1)) - Sum_{p in A020451} 1/p - 1 = 0.3374936085... . - Amiram Eldar, May 18 2022

A036319 Composite numbers whose prime factors have no digits other than 4's and 9's.

Original entry on oeis.org

201601, 224051, 249001, 2244551, 2494501, 4467101, 4964551, 19957601, 22180051, 22225051, 22449551, 24700001, 24949501, 24990001, 42632101, 42654551, 47379551, 47404501, 49735051, 90518849, 98982601, 100598899, 111801449, 124251499, 199557601, 221780051, 222200551, 247445501
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

Closed under multiplication. - David A. Corneth, Sep 21 2020
From M. F. Hasler, Sep 22 2020: (Start)
Also closed under LCM, but not under GCD.
All terms are congruent to 1 or 9 (mod 10), depending on the parity of their number of prime factors counted with multiplicity, A001222. (End)

Examples

			The smallest prime made up of 4's and 9's is 449 (see A020466), so the smallest term here is 449^2 = 201601. - _N. J. A. Sloane_, Sep 21 2020
		

Crossrefs

Programs

  • Mathematica
    cn49Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},CompositeQ[n]&&Union[ Flatten[ IntegerDigits/@fi]]=={4,9}&&AllTrue[fi,PrimeQ]]; Select[Range[ 1,1006*10^5,2],cn49Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 21 2020 *)
  • PARI
    is(N)={!isprime(N)&& !#setminus(Set(concat(apply (digits, factor(N)[,1]))), [4,9])} \\ M. F. Hasler, Sep 22 2020

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020466} (p/(p - 1)) - Sum_{p in A020466} 1/p - 1 = 0.00001523788893... . - Amiram Eldar, May 22 2022

Extensions

More terms from David A. Corneth, Sep 21 2020

A036324 Composite numbers whose prime factors have no digits other than 7's and 9's.

Original entry on oeis.org

49, 343, 553, 679, 2401, 3871, 4753, 5579, 6241, 6839, 6979, 7663, 9409, 16807, 27097, 33271, 39053, 43687, 47873, 48853, 53641, 62963, 65863, 77183, 77309, 78763, 94769, 96709, 117649, 189679, 232897, 273371, 305809, 335111, 341971
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020471. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[342000],CompositeQ[#]&&SubsetQ[{7,9},Union[ Flatten[ IntegerDigits/@ FactorInteger[#][[All,1]]]]]&] (* Harvey P. Dale, Aug 01 2019 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020471} (p/(p - 1)) - Sum_{p in A020471} 1/p - 1 = 0.0287747452... . - Amiram Eldar, May 22 2022

Extensions

Definition clarified by Harvey P. Dale, Aug 01 2019

A036304 Composite numbers whose prime factors contain no digits other than 1 and 4.

Original entry on oeis.org

121, 451, 1331, 1681, 4961, 14641, 18491, 45221, 48851, 54571, 68921, 125521, 158521, 161051, 168551, 182081, 203401, 452551, 455521, 467851, 485221, 497431, 537361, 590851, 600281, 758131, 1380731, 1686781, 1697851, 1743731, 1771561
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020452. - David A. Corneth, Oct 09 2020

Examples

			The composite 4961 = 11^2 * 41 is in the sequence as the digits of its prime factors are either 1 or 4. - _David A. Corneth_, Oct 17 2020
		

Crossrefs

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020452} (p/(p - 1)) - Sum_{p in A020452} 1/p - 1 = 0.0122909749... . - Amiram Eldar, May 18 2022

A036305 Composite numbers whose prime factors contain no digits other than 1 and 5.

Original entry on oeis.org

25, 55, 121, 125, 275, 605, 625, 755, 1331, 1375, 1661, 3025, 3125, 3775, 5755, 6655, 6875, 7555, 8305, 12661, 14641, 15125, 15625, 16621, 18271, 18875, 22801, 28775, 33275, 34375, 37775, 41525, 57755, 63305, 73205, 75625, 77555, 77755, 78125
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020453. - David A. Corneth, Oct 09 2020

Crossrefs

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020453} (p/(p - 1)) - Sum_{p in A020453} 1/p - 1 = 0.0873463128... . - Amiram Eldar, May 18 2022

A036306 Composite numbers whose prime factors contain no digits other than 1 and 6.

Original entry on oeis.org

121, 671, 1331, 3721, 7271, 7381, 14641, 40321, 40931, 73271, 79981, 81191, 122771, 161051, 177221, 183271, 226981, 406321, 436921, 443531, 450241, 680821, 727771, 805981, 879791, 893101, 982771, 1016321, 1227721, 1350481, 1771561
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020454. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    pf16Q[n_]:=Module[{pfs=Union[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[1]]]]},pfs=={1}||pfs=={1,6}]; Select[Range[ 2*10^6],CompositeQ[#]&&pf16Q[#]&] (* Harvey P. Dale, Jul 12 2014 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020454} (p/(p - 1)) - Sum_{p in A020454} 1/p - 1 = 0.0112607346... . - Amiram Eldar, May 18 2022

A036307 Composite numbers whose prime factors contain no digits other than 1 and 7.

Original entry on oeis.org

49, 77, 119, 121, 187, 289, 343, 497, 539, 781, 833, 847, 1207, 1309, 1331, 2023, 2057, 2401, 3179, 3479, 3773, 4913, 5041, 5467, 5831, 5929, 7819, 8197, 8449, 8591, 9163, 9317, 12287, 12439, 12881, 13277, 14161, 14399, 14641, 16807, 18989, 19547
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020455. - David A. Corneth, Oct 09 2020

Crossrefs

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020455} (p/(p - 1)) - Sum_{p in A020455} 1/p - 1 = 0.0775663737... . - Amiram Eldar, May 18 2022

A036308 Composite numbers whose prime factors contain no digits other than 1 and 8.

Original entry on oeis.org

121, 1331, 1991, 8921, 9691, 12991, 14641, 19921, 21901, 32761, 89221, 98131, 106601, 142901, 146791, 159461, 161051, 199991, 213761, 219131, 240911, 327791, 360371, 657721, 714491, 776161, 892991, 957791, 976921, 981431, 1040461, 1079441, 1172611, 1394761, 1468091
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020456. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Magma
    [n: n in [4..1500000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [1,8]}]; // Bruno Berselli, Aug 26 2013
  • Mathematica
    dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {1}||d == {8}||d == {1, 8})]; Select[Range[2, 1500000], dpfQ] (* Vincenzo Librandi, Aug 25 2013 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020456} (p/(p - 1)) - Sum_{p in A020456} 1/p - 1 = 0.0101097220... . - Amiram Eldar, May 18 2022

Extensions

More terms from Vincenzo Librandi, Aug 25 2013

A036309 Composite numbers whose prime factors contain no digits other than 1 and 9.

Original entry on oeis.org

121, 209, 361, 1331, 2101, 2189, 2299, 3629, 3781, 3971, 6859, 10021, 10109, 10901, 14641, 17309, 17461, 18829, 21989, 23111, 24079, 25289, 36481, 37981, 38009, 39601, 39919, 41591, 43681, 68951, 71839, 75449, 101189, 110231, 111199, 119911
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020457. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[120000],CompositeQ[#]&&SubsetQ[{1,9},Union[Flatten[ IntegerDigits /@ FactorInteger[ #][[All,1]]]]]&] (* Harvey P. Dale, Mar 30 2019 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020457} (p/(p - 1)) - Sum_{p in A020457} 1/p - 1 = 0.0200389643... . - Amiram Eldar, May 18 2022
Showing 1-10 of 24 results. Next