A036349 Numbers whose sum of prime factors (taken with multiplicity) is even.
1, 2, 4, 8, 9, 15, 16, 18, 21, 25, 30, 32, 33, 35, 36, 39, 42, 49, 50, 51, 55, 57, 60, 64, 65, 66, 69, 70, 72, 77, 78, 81, 84, 85, 87, 91, 93, 95, 98, 100, 102, 110, 111, 114, 115, 119, 120, 121, 123, 128, 129, 130, 132, 133, 135, 138, 140, 141, 143, 144, 145, 154, 155
Offset: 1
Keywords
Examples
141 = 3 * 47 is a term since the sum 3 + 47 = 50 is even.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2])::even end proc: select(filter, [$1..200]); # Robert Israel, Jul 15 2020
-
Mathematica
Select[Range[160],EvenQ[Total[Times@@@FactorInteger[#]]]&] (* Harvey P. Dale, Sep 21 2011 *)
-
PARI
isok(n) = my(f=factor(n)); (sum(k=1, #f~, f[k,1]*f[k,2]) % 2) == 0; \\ Michel Marcus, Jul 19 2018
Formula
Sum_{n>=1} 1/a(n)^s = (zeta(s) + ((2^s + 1)/(2^s - 1))*zeta(2*s)/zeta(s))/2 for Re(s)>1. - Amiram Eldar, Nov 02 2020
Extensions
First term (2) from Harvey P. Dale, Sep 21 2011
First term (1) from David James Sycamore, Jul 17 2018
Comments