cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036354 Heptagonal square numbers.

Original entry on oeis.org

1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721
Offset: 1

Views

Author

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

From Ant King, Nov 11 2011: (Start)
This sequence is also the union of the three sequences defined by:
a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600.
a(3n-1) = 9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2.
a(3n) = ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600.
Equivalent short forms for these subsequences are:
a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600).
a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)).
a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600).
(End)
Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015

Crossrefs

Programs

  • Maple
    A036354 := proc(n)
    if n <= 7 then
        op(n,[1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]);
    else
        procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ;
    end if;
    end proc:
    seq(A036354(n),n=1..12) ;
  • Mathematica
    LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *)
  • PARI
    Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015

Formula

O.g.f.: -x*(1 + 80*x + 5848*x^2 + 222070*x^3 + 5848*x^4 + 80*x^5 + x^6) / ( (x-1)*(x^6 - 2079362*x^3 + 1) ).
From Richard Choulet, May 08 2009: (Start)
With the first values, for n>=0, a(n+9) = 2079363*(a(n+6) - a(n+3)) + a(n).
On every bisection modulo 2: a(n+1) = 1039681*a(n) + 116964 + 164388*sqrt(40*a(n)^2 + 9*a(n)).
On every bisection modulo 2: a(n+2) = 2079362*a(n+1) - a(n) + 233928. (End)
From Ant King, Nov 11 2011: (Start)
a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7).
a(n) = 2079362*a(n-3) - a(n-6) + 233928.
(End)
From Jonathan Pappas, Jan 16 2022: (Start)
Define the three sequences
b(n) = 1442*b(n-1) - b(n-2) for n >= 2, with b(0) = -77, b(1) = 1;
c(n) = 1442*c(n-1) - c(n-2) for n >= 2, with c(0) = -9, c(1) = 9; and
d(n) = 1442*d(n-1) - d(n-2) for n >= 2, with d(0) = -1, d(1) = 77.
Then, for n >= 1,
a(3n - 2) = b(n)^2,
a(3n - 1) = c(n)^2, and
a(3n) = d(n)^2.
(End)

Extensions

More terms from Eric W. Weisstein
One more term from Richard Choulet, May 08 2009