cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A036409 a(n) = ceiling(n^2/11).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 27, 30, 33, 37, 41, 44, 49, 53, 57, 62, 67, 72, 77, 82, 88, 94, 99, 106, 112, 118, 125, 132, 139, 146, 153, 161, 169, 176, 185, 193, 201, 210, 219, 228, 237, 246, 256, 266, 275, 286, 296
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(ceil(n^2/11),n=0..100); # Robert Israel, Apr 06 2016
  • Mathematica
    Table[Ceiling[n^2/11], {n, 0, 57}] (* Michael De Vlieger, Apr 06 2016 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,1,-2,1},{0,1,1,1,2,3,4,5,6,8,10,11,14},60] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    concat(0, Vec(x*(1+x)*(1-x+x^2)*(1-x+x^2-x^3+x^4)*(1-x^2+x^4) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)) + O(x^50))) \\ Colin Barker, Apr 06 2016

Formula

a(n) = +2 a(n-1) -a(n-2) +a(n-11) -2 a(n-12) +a(n-13). - R. J. Mathar, Mar 11 2012
G.f.: x*(1+x)*(1-x+x^2)*(1-x+x^2-x^3+x^4)*(1-x^2+x^4) / ((1-x)^3*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). - Colin Barker, Apr 06 2016
a(m + 11 k) = a(m) + 11 k^2 + 2 m k. - Robert Israel, Apr 06 2016

A175827 Partial sums of ceiling(n^2/10).

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 12, 17, 24, 33, 43, 56, 71, 88, 108, 131, 157, 186, 219, 256, 296, 341, 390, 443, 501, 564, 632, 705, 784, 869, 959, 1056, 1159, 1268, 1384, 1507, 1637, 1774, 1919, 2072, 2232, 2401, 2578, 2763, 2957, 3160, 3372, 3593, 3824, 4065, 4315
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A036408.

Examples

			a(10) = 0 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 7 + 9 + 10 = 43.
		

Crossrefs

Programs

  • Magma
    [Round((2*n+1)*(2*n^2+2*n+27)/120): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
  • Maple
    seq(ceil((2*n^3+3*n^2+28*n-9)/60),n=0..50)

Formula

a(n) = round((2*n+1)*(2*n^2 + 2*n + 27)/120).
a(n) = floor((2*n^3 + 3*n^2 + 28*n + 36)/60).
a(n) = ceiling((2*n^3 + 3*n^2 + 28*n - 9)/60).
a(n) = a(n-10) + (n+1)*(n-10) + 43.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1 - x + x^3 + x^7 - x^9 + x^10) / ( (1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-10) - 3*a(n-11) + 3*a(n-12) - a(n-13). (End)

A185322 a(n) = ceiling(prime(n)/10).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 11, 11, 11, 11, 12, 13, 14, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 20, 20, 22, 23, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 31, 32, 32, 32, 34, 34, 35, 35, 36
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 30 2012

Keywords

Crossrefs

Ceiling(n^2/10) is in A036408.
Cf. A176044.

Programs

Showing 1-3 of 3 results.