cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036428 Square octagonal numbers.

Original entry on oeis.org

1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321, 3297585999935511630263561281, 639714685669847721430064568225
Offset: 1

Views

Author

Jean-Francois Chariot (jean-francois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

Also, numbers simultaneously octagonal and centered octagonal. - Steven Schlicker, Apr 24 2007

Crossrefs

Programs

  • Magma
    [Floor(1/12*(2+Sqrt(3))^(4*n-2)): n in [1..20]]; // Vincenzo Librandi, Dec 04 2015
  • Maple
    A036428 := proc(n)
            option remember;
            if n < 4 then
                    op(n,[1,225,43681]) ;
            else
                    195*(procname(n-1)-procname(n-2))+procname(n-3) ;
            end if;
    end proc: # R. J. Mathar, Nov 11 2011
  • Mathematica
    LinearRecurrence[{195,-195,1}, {1,225,43681}, 12] (* Ant King, Nov 15 2011 *)
  • PARI
    Vec(-x*(x^2+30*x+1)/((x-1)*(x^2-194*x+1)) + O(x^20)) \\ Colin Barker, Jun 24 2015
    
  • PARI
    vector(15, n, floor((2+sqrt(3))^(4*n-2)/12)) \\ Altug Alkan, Oct 19 2015
    

Formula

Let x(n) + y(n)*sqrt(48) = (8+sqrt(48))*(7+sqrt(48))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+8*(s(n)^2-s(n))). - Steven Schlicker, Apr 24 2007
a(n+2) = 194*a(n+1) - a(n) + 32 and also a(n+1) = 97*a(n) + 56*sqrt(3*a(n)^2 + a(n)). - Richard Choulet, Sep 26 2007
G.f.: x*(x^2+30x+1)/((1-x)*(1-194x+x^2)).
From Ant King, Nov 15 2011: (Start)
lim_{n->oo} a(n)/a(n-1) = (2 + sqrt(3))^4 = 97 + 56*sqrt(3).
a(n) = (1/12) * ((2 + sqrt(3))^(4n-2) + (2 - sqrt(3))^(4n-2) - 2).
a(n) = floor((1/12) * (2 + sqrt(3))^(4n-2)).
a(n) = (1/12) * ((tan(5*Pi/12))^(4n-2) + (tan(Pi/12))^(4n-2) - 2).
a(n) = floor((1/12) * tan(5*Pi/12)^(4n-2)).
(End)
a(n) = A028230(n)^2. - Bernard Schott, Dec 23 2022

Extensions

More terms from Eric W. Weisstein
Edited by N. J. A. Sloane, Oct 02 2007