A036441 a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.
2, 4, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
Offset: 1
Examples
a(2,2) = 4 because 2 + gpf(2) = 2 + 2 = 4; a(2,3) = 6 because 4 + gpf(4) = 4 + 2 = 6.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a036441 n = a036441_list !! (n-1) a036441_list = tail a076271_list -- Reinhard Zumkeller, Nov 08 2015, Nov 14 2011
-
Mathematica
f[n_]:=Last[First/@FactorInteger[n]];Join[{a=2},Table[a+=f[a],{n,2,100}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*) NestList[#+FactorInteger[#][[-1,1]]&,2,60] (* Harvey P. Dale, Dec 02 2012 *)
-
PARI
a(n)=(n+2-if(n\2+1<(p=nextprime(n\2+1))&&n+1
Formula
a(n) = p(m)*(n+2-p(m)), where p(k) is the k-th prime and m is the smallest index such that n+2 <= p(m) + p(m+1). - Max Alekseyev, Oct 21 2008
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015
Extensions
Better description from Reinhard Zumkeller, Feb 04 2002
Edited by M. F. Hasler, Apr 08 2015
Comments