cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036464 Number of ways to place two nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 8, 44, 140, 340, 700, 1288, 2184, 3480, 5280, 7700, 10868, 14924, 20020, 26320, 34000, 43248, 54264, 67260, 82460, 100100, 120428, 143704, 170200, 200200, 234000, 271908, 314244, 361340, 413540, 471200, 534688, 604384
Offset: 1

Views

Author

Robert G. Wilson v, Raymond Bush (c17h21no4(AT)hotmail.com), Kirk Conely, N. J. A. Sloane

Keywords

Crossrefs

Column k=2 of A348129.

Programs

  • Maple
    f:=n->n^4/2 - 5*n^3/3 + 3*n^2/2 - n/3; [seq(f(n),n=1..200)]; # N. J. A. Sloane, Feb 16 2013
  • Mathematica
    f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 50}]   (* A036464 *)
    Table[a[n]/4, {n, 2, 50}] (* A000914 *)
    (* Clark Kimberling, Dec 31 2011 *)
    CoefficientList[Series[4 x^2 (2 + x) / (1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,8,44,140},50] (* Harvey P. Dale, Mar 26 2015 *)

Formula

a(n) = C(n, 3)*(3*n-1).
G.f.: 4*x^3*(2+x)/(1-x)^5. - Colin Barker, May 02 2012
a(n) = 2*sum_{i=1..n-2} i(i + 1)^2. - Wesley Ivan Hurt, Mar 18 2014
E.g.f.: (exp(x) * x^3 * (8 + 3*x))/6. - Vaclav Kotesovec, Feb 15 2015
For n>0, a(n) = A163102(n-1) - A006331(n-1). - Antal Pinter, Sep 20 2015