cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036469 Partial sums of A000009 (partitions into distinct parts).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 43, 55, 70, 88, 110, 137, 169, 207, 253, 307, 371, 447, 536, 640, 762, 904, 1069, 1261, 1483, 1739, 2035, 2375, 2765, 3213, 3725, 4310, 4978, 5738, 6602, 7584, 8697, 9957, 11383, 12993, 14809, 16857, 19161, 21751, 24661
Offset: 0

Views

Author

Keywords

Comments

Also number of 1's in all partitions of n+1 into odd parts. Example: a(4)=7 because the partitions of 5 into odd parts are [5], [3,1,1], [1,1,1,1,1], having a total number of 7 1's. - Emeric Deutsch, Mar 29 2006
Convolved with A035363 = A000070. - Gary W. Adamson, Jun 09 2009
Equals row sums of triangle A166240. - Gary W. Adamson, Oct 09 2009
a(n) = if n <= 1 then A201377(1,n) else A201377(n,1). - Reinhard Zumkeller, Dec 02 2011
a(n) equals the sum of the parts of the form 2^k (k >= 0) in all partitions of n + 1 into distinct parts. Example: a(6) = 14. The partitions of 7 into distinct parts are [7], [6,1], [5,2], [4,3] and [4,2,1] having sum over parts of the form 2^k equal to 1 + 2 + 4 + 4 + 2 + 1 = 14. - Peter Bala, Dec 01 2013
Number of partitions of the (n+1)-multiset {0,...,0,1} with n 0's into distinct multisets; a(3) = 5: 0|00|1, 00|01, 000|1, 0|001, 0001. Also number of factorizations of 3*2^n into distinct factors; a(3) = 5: 2*3*4, 4*6, 3*8, 2*12, 24. - Alois P. Heinz, Jul 30 2021

Crossrefs

Cf. A035363, A000070. - Gary W. Adamson, Jun 09 2009
Cf. A166240. - Gary W. Adamson, Oct 09 2009
Column k=1 of A346520.

Programs

  • Maple
    g:=1/(1-x)/product(1-x^(2*j-1),j=1..30): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..46); # Emeric Deutsch, Mar 29 2006
    # second Maple program:
    b:= proc(n, i) b(n, i):= `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, min(n-i, i-1)))))
        end:
    a:= proc(n) option remember; b(n, n) +`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 21 2012
  • Mathematica
    CoefficientList[ Series[Product[(1 + t^i), {i, 1, Infinity}]/(1 - t), {t, 0, 46}], t] (* Geoffrey Critzer, May 16 2010 *)
    b[n_, i_] := If[n == 0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, b[n-i, Min[n-i, i-1]]]]]; a[n_] := a[n] = b[n, n]+If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    Accumulate[Table[PartitionsQ[n], {n, 0, 50}]] (* Vaclav Kotesovec, Oct 26 2016 *)

Formula

G.f.: 1/[(1-x)*product(1-x^(2j-1), j=1..infinity)]. - Emeric Deutsch, Mar 29 2006
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)) * (1 + (18+13*Pi^2) / (48*Pi*sqrt(3*n)) + (2916 - 1404*Pi^2 + 121*Pi^4)/(13824*Pi^2*n)). - Vaclav Kotesovec, Feb 26 2015, updated Oct 26 2016
For n > 0, a(n) = A026906(n) + 1. - Vaclav Kotesovec, Oct 26 2016
Faster converging g.f.: A(x) = (1/(1 - x))*Sum_{n >= 0} x^(n*(2*n-1))/Product_{k = 1..2*n} (1 - x^k). - Peter Bala, Feb 02 2021