cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036497 Number of partitions of n into distinct primes (counting 1 as a prime).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 11, 13, 13, 15, 16, 16, 18, 18, 20, 22, 22, 24, 25, 26, 29, 30, 32, 33, 34, 37, 39, 41, 44, 45, 47, 51, 53, 57, 59, 61, 64, 67, 72, 76, 79, 82, 86, 89, 95, 100, 103, 108, 112, 118
Offset: 0

Views

Author

Wouter Meeussen, Dec 17 1998

Keywords

Comments

Honsberger shows that the primes-including-1 are a complete sequence and therefore all numbers in this sequence exceed zero. - Ron Knott, Aug 27 2016
Number of partitions of n into distinct noncomposite numbers. - Omar E. Pol, Dec 14 2024

Examples

			a(11) = 3 since 11 = 1+2+3+5=1+3+7 has 3 partitions of distinct primes-including-1. - _Ron Knott_, Aug 27 2016
		

References

  • Ross Honsberger, Mathematical Gems III, The Mathematical Association of America, 1985, pages 127-128.

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<1, n+1, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; (p-> `if`(n=0, 1,
          `if`(n>s(i), 0, b(n, i-1)+ `if`(p>n, 0,
           b(n-p, i-1)))))(`if`(i<1, 1, ithprime(i)))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 27 2016
  • Mathematica
    myprime[ n_ ] := If[ n===0, 1, Prime[ n ] ]; ta1=Table[ Product[ 1+z^myprime[ k ], {k, 0, n} ]~CoefficientList~z, {n, 31, 32} ]; leveled=Count[ Take[ Last@ta1, Length@ta1[ [ -2 ] ] ]-ta1[ [ -2 ] ], 0 ]; Take[ Last@ta1, leveled ]
    Table[Length@ DeleteCases[DeleteCases[IntegerPartitions@ n, {_, a_, _} /; CompositeQ@ a], w_ /; MemberQ[Differences@ w, 0]], {n, 0, 60}] (* Michael De Vlieger, Aug 27 2016 *)

Formula

G.f.: (1 + x)*Product_{k>=1} (1 + x^prime(k)). - Ilya Gutkovskiy, Dec 31 2016