cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A368577 Irregular table T(n, k), n >= 0, k = 1..A036497(n), read by rows; the n-th row lists the numbers m such that A331835(m) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 16, 11, 12, 17, 13, 18, 14, 19, 20, 15, 21, 32, 22, 24, 33, 23, 25, 34, 64, 26, 35, 36, 65, 27, 28, 37, 66, 29, 38, 40, 67, 68, 30, 39, 41, 69, 128, 31, 42, 48, 70, 72, 129, 43, 44, 49, 71, 73, 130, 256, 45, 50, 74, 80, 131, 132, 257
Offset: 0

Views

Author

Rémy Sigrist, Dec 31 2023

Keywords

Comments

As a flat sequence, this is a permutation of the nonnegative integers (with inverse A368578).

Examples

			Table T(n, k) begins:
  n   n-th row
  --  ------------------
   0  0
   1  1
   2  2
   3  3, 4
   4  5
   5  6, 8
   6  7, 9
   7  10, 16
   8  11, 12, 17
   9  13, 18
  10  14, 19, 20
  11  15, 21, 32
  12  22, 24, 33
  13  23, 25, 34, 64
  14  26, 35, 36, 65
  15  27, 28, 37, 66
  16  29, 38, 40, 67, 68
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

T(n, 1) = A345297(n).
T(n, A036497(n)) = A200947(n).

A035263 Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

First Feigenbaum symbolic (or period-doubling) sequence, corresponding to the accumulation point of the 2^{k} cycles through successive bifurcations.
To construct the sequence: start with 1 and concatenate: 1,1, then change the last term (1->0; 0->1) gives: 1,0. Concatenate those 2 terms: 1,0,1,0, change the last term: 1,0,1,1. Concatenate those 4 terms: 1,0,1,1,1,0,1,1 change the last term: 1,0,1,1,1,0,1,0, etc. - Benoit Cloitre, Dec 17 2002
Let T denote the present sequence. Here is another way to construct T. Start with the sequence S = 1,0,1,,1,0,1,,1,0,1,,1,0,1,,... and fill in the successive holes with the successive terms of the sequence T (from paper by Allouche et al.). - Emeric Deutsch, Jan 08 2003 [Note that if we fill in the holes with the terms of S itself, we get A141260. - N. J. A. Sloane, Jan 14 2009]
From N. J. A. Sloane, Feb 27 2009: (Start)
In more detail: define S to be 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1,0,1___...
If we fill the holes with S we get A141260:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........0.......1.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.0.1.... = A141260.
But instead, if we define T recursively by filling the holes in S with the terms of T itself, we get A035263:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........1.......0.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.1.1.0.1.0.1..0..1.1.1..0..1.0.1.. = A035263. (End)
Characteristic function of A003159, i.e., A035263(n)=1 if n is in A003159 and A035263(n)=0 otherwise (from paper by Allouche et al.). - Emeric Deutsch, Jan 15 2003
This is the sequence of R (=1), L (=0) moves in the Towers of Hanoi puzzle: R, L, R, R, R, L, R, L, R, L, R, R, R, ... - Gary W. Adamson, Sep 21 2003
Manfred Schroeder, p. 279 states, "... the kneading sequences for unimodal maps in the binary notation, 0, 1, 0, 1, 1, 1, 0, 1..., are obtained from the Morse-Thue sequence by taking sums mod 2 of adjacent elements." On p. 278, in the chapter "Self-Similarity in the Logistic Parabola", he writes, "Is there a closer connection between the Morse-Thue sequence and the symbolic dynamics of the superstable orbits? There is indeed. To see this, let us replace R by 1 and C and L by 0." - Gary W. Adamson, Sep 21 2003
Partial sums modulo 2 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... . - Philippe Deléham, Jan 02 2004
Parity of A007913, A065882 and A065883. - Philippe Deléham, Mar 28 2004
The length of n-th run of 1's in this sequence is A080426(n). - Philippe Deléham, Apr 19 2004
Also parity of A005043, A005773, A026378, A104455, A117641. - Philippe Deléham, Apr 28 2007
Equals parity of the Towers of Hanoi, or ruler sequence (A001511), where the Towers of Hanoi sequence (1, 2, 1, 3, 1, 2, 1, 4, ...) denotes the disc moved, labeled (1, 2, 3, ...) starting from the top; and the parity of (1, 2, 1, 3, ...) denotes the direction of the move, CW or CCW. The frequency of CW moves converges to 2/3. - Gary W. Adamson, May 11 2007
A conjectured identity relating to the partition sequence, A000041: p(x) = A(x) * A(x^2) when A(x) = the Euler transform of A035263 = polcoeff A174065: (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...). - Gary W. Adamson, Mar 21 2010
a(n) is 1 if the number of trailing zeros in the binary representation of n is even. - Ralf Stephan, Aug 22 2013
From Gary W. Adamson, Mar 25 2015: (Start)
A conjectured identity relating to the partition sequence, A000041 as polcoeff p(x); A003159, and its characteristic function A035263: (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); and A036554 indicating n-th terms with zeros in A035263: (2, 6, 8, 10, 14, 18, 22, ...).
The conjecture states that p(x) = A(x) = A(x^2) when A(x) = polcoeffA174065 = the Euler transform of A035263 = 1/(1-x)*(1-x^3)*(1-x^4)*(1-x^5)*... = (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...) and the aerated variant = the Euler transform of the complement of A035263: 1/(1-x^2)*(1-x^6)*(1-x^8)*... = (1 + x^2 + x^4 + 2x^6 + 3x^8 + 4x^10 + ...).
(End)
The conjecture above was proved by Jean-Paul Allouche on Dec 21 2013.
Regarded as a column vector, this sequence is the product of A047999 (Sierpinski's gasket) regarded as an infinite lower triangular matrix and A036497 (the Fredholm-Rueppel sequence) where the 1's have alternating signs, 1, -1, 0, 1, 0, 0, 0, -1, .... - Gary W. Adamson, Jun 02 2021
The numbers of 1's through n (A050292) can be determined by starting with the binary (say for 19 = 1 0 0 1 1) and writing: next term is twice current term if 0, otherwise twice plus 1. The result is 1, 2, 4, 9, 19. Take the difference row, = 1, 1, 2, 5, 10; and add the odd-indexed terms from the right: 5, 4, 3, 2, 1 = 10 + 2 + 1 = 13. The algorithm is the basis for determining the disc configurations in the tower of Hanoi game, as shown in the Jul 24 2021 comment of A060572. - Gary W. Adamson, Jul 28 2021

References

  • Karamanos, Kostas. "From symbolic dynamics to a digital approach." International Journal of Bifurcation and Chaos 11.06 (2001): 1683-1694. (Full version. See p. 1685)
  • Karamanos, K. (2000). From symbolic dynamics to a digital approach: chaos and transcendence. In Michel Planat (Ed.), Noise, Oscillators and Algebraic Randomness (Lecture Notes in Physics, pp. 357-371). Springer, Berlin, Heidelberg. (Short version. See p. 359)
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 892, column 2, Note on p. 84, part (a).

Crossrefs

Parity of A001511. Anti-parity of A007814.
Absolute values of first differences of A010060. Apart from signs, same as A029883. Essentially the same as A056832.
Swapping 0 and 1 gives A096268.
Cf. A033485, A050292 (partial sums), A089608, A088172, A019300, A039982, A073675, A121701, A141260, A000041, A174065, A220466, A154269 (Mobius transform).
Limit of A317957(n) for large n.

Programs

  • Haskell
    import Data.Bits (xor)
    a035263 n = a035263_list !! (n-1)
    a035263_list = zipWith xor a010060_list $ tail a010060_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    nmax:=105: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+1) mod 2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
    A035263 := n -> 1 - padic[ordp](n, 2) mod 2:
    seq(A035263(n), n=1..105); # Peter Luschny, Oct 02 2018
  • Mathematica
    a[n_] := a[n] = If[ EvenQ[n], 1 - a[n/2], 1]; Table[ a[n], {n, 1, 105}] (* Or *)
    Rest[ CoefficientList[ Series[ Sum[ x^(2^k)/(1 + (-1)^k*x^(2^k)), {k, 0, 20}], {x, 0, 105}], x]]
    f[1] := True; f[x_] := Xor[f[x - 1], f[Floor[x/2]]]; a[x_] := Boole[f[x]] (* Ben Branman, Oct 04 2010 *)
    a[n_] := If[n == 0, 0, 1 - Mod[ IntegerExponent[n, 2], 2]]; (* Jean-François Alcover, Jul 19 2013, after Michael Somos *)
    Nest[ Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v, Jul 23 2014 *)
    SubstitutionSystem[{0->{1,1},1->{1,0}},1,{7}][[1]] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    {a(n) = if( n==0, 0, 1 - valuation(n, 2)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); subst( Pol(binary(n)) - Pol(binary(n-1)), x, 1)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); direuler(p=2, n, 1 / (1 - X^((p<3) + 1)))[n])}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    def A035263(n): return (n&-n).bit_length()&1 # Chai Wah Wu, Jan 09 2023
  • Scheme
    (define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i)))))) ;; (Use mod instead of modulo in R6RS) Antti Karttunen, Sep 11 2017
    

Formula

Absolute values of first differences (A029883) of Thue-Morse sequence (A001285 or A010060). Self-similar under 10->1 and 11->0.
Series expansion: (1/x) * Sum_{i>=0} (-1)^(i+1)*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*(floor((n+1)/2^k)-floor(n/2^k)). - Benoit Cloitre, Jun 03 2003
Another g.f.: Sum_{k>=0} x^(2^k)/(1+(-1)^k*x^(2^k)). - Ralf Stephan, Jun 13 2003
a(2*n) = 1-a(n), a(2*n+1) = 1. - Ralf Stephan, Jun 13 2003
a(n) = parity of A033485(n). - Philippe Deléham, Aug 13 2003
Equals A088172 mod 2, where A088172 = 1, 2, 3, 7, 13, 26, 53, 106, 211, 422, 845, ... (first differences of A019300). - Gary W. Adamson, Sep 21 2003
a(n) = a(n-1) - (-1)^n*a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(1) = 1 and a(n) = abs(a(n-1) - a(floor(n/2))). - Benoit Cloitre, Dec 02 2003
a(n) = 1 - A096268(n+1); A050292 gives partial sums. - Reinhard Zumkeller, Aug 16 2006
Multiplicative with a(2^k) = 1 - (k mod 2), a(p^k) = 1, p > 2. Dirichlet g.f.: Product_{n = 4 or an odd prime} (1/(1-1/n^s)). - Christian G. Bower, May 18 2005
a(-n) = a(n). a(0)=0. - Michael Somos, Sep 04 2006
Dirichlet g.f.: zeta(s)*2^s/(2^s+1). - Ralf Stephan, Jun 17 2007
a(n+1) = a(n) XOR a(ceiling(n/2)), a(1) = 1. - Reinhard Zumkeller, Jun 11 2009
Let D(x) be the generating function, then D(x) + D(x^2) == x/(1-x). - Joerg Arndt, May 11 2010
a(n) = A010060(n) XOR A010060(n+1); a(A079523(n)) = 0; a(A121539(n)) = 1. - Reinhard Zumkeller, Mar 01 2012
a((2*n-1)*2^p) = (p+1) mod 2, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
a(n) = A000035(A001511(n)). - Omar E. Pol, Oct 29 2013
a(n) = 2-A056832(n) = (5-A089608(n))/4. - Antti Karttunen, Sep 11 2017, after Benoit Cloitre
For n >= 0, a(n+1) = M(2n) mod 2 where M(n) is the Motzkin number A001006 (see Deutsch and Sagan 2006 link). - David Callan, Oct 02 2018
a(n) = A038712(n) mod 3. - Kevin Ryde, Jul 11 2019
Given any n in the form (k * 2^m, k odd), extract k and m. Categorize the results into two outcomes of (k, m, even or odd). If (k, m) is (odd, even) substitute 1. If (odd, odd), denote the result 0. Example: 5 = (5 * 2^0), (odd, even, = 1). (6 = 3 * 2^1), (odd, odd, = 0). - Gary W. Adamson, Jun 23 2021

Extensions

Alternative description added to the name by Antti Karttunen, Sep 11 2017

A023893 Number of partitions of n into prime power parts (1 included); number of nonisomorphic Abelian subgroups of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 105, 134, 171, 215, 269, 335, 415, 511, 626, 764, 929, 1125, 1356, 1631, 1953, 2333, 2776, 3296, 3903, 4608, 5427, 6377, 7476, 8744, 10205, 11886, 13818, 16032, 18565, 21463, 24768, 28536
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jul 28 2022: (Start)
The a(0) = 1 through a(6) = 10 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (33)
           (11)  (21)   (22)    (32)     (42)
                 (111)  (31)    (41)     (51)
                        (211)   (221)    (222)
                        (1111)  (311)    (321)
                                (2111)   (411)
                                (11111)  (2211)
                                         (3111)
                                         (21111)
                                         (111111)
(End)
		

Crossrefs

Cf. A009490, A023894 (first differences), A062297 (number of Abelian subgroups).
The multiplicative version (factorizations) is A000688.
Not allowing 1's gives A023894, strict A054685, ranked by A355743.
The version for just primes (not prime-powers) is A034891, strict A036497.
The strict version is A106244.
These partitions are ranked by A302492.
A000041 counts partitions, strict A000009.
A001222 counts prime-power divisors.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Map[Length,FactorInteger[#]], 1] == Length[#] &]], {n, 0, 35}] (* Geoffrey Critzer, Oct 25 2015 *)
    nmax = 50; Clear[P]; P[m_] := P[m] = Product[Product[1/(1-x^(p^k)), {k, 1, m}], {p, Prime[Range[PrimePi[nmax]]]}]/(1-x)+O[x]^nmax // CoefficientList[ #, x]&; P[1]; P[m=2]; While[P[m] != P[m-1], m++]; P[m] (* Jean-François Alcover, Aug 31 2016 *)
  • PARI
    lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (isprimepower(k), 1/(1-x^k), 1))/(1-x); for (n=0, m, print1(polcoeff(gf, n, t), ", "));} \\ Michel Marcus, Mar 09 2013
    
  • Python
    from functools import lru_cache
    from sympy import factorint
    @lru_cache(maxsize=None)
    def A023893(n):
        @lru_cache(maxsize=None)
        def c(n): return sum((p**(e+1)-p)//(p-1) for p,e in factorint(n).items())+1
        return (c(n)+sum(c(k)*A023893(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024

Formula

G.f.: (Product_{p prime} Product_{k>=1} 1/(1-x^(p^k))) / (1-x).

A280917 Expansion of 1/(1 - x - Sum_{k>=1} x^prime(k)).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 50, 95, 180, 343, 652, 1240, 2359, 4486, 8532, 16227, 30862, 58697, 111636, 212321, 403814, 768015, 1460691, 2778094, 5283667, 10049027, 19112282, 36349721, 69133673, 131485594, 250072951, 475614693, 904573387, 1720411555, 3272057256, 6223138101, 11835809946, 22510571803, 42812941849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 10 2017

Keywords

Comments

Number of compositions (ordered partitions) of n into prime parts (1 included) (A008578).

Examples

			a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 39; CoefficientList[Series[1/(1 - x - Sum[x^Prime[k], {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1 / (1 - x - sum(k=1, 100,  x^prime(k))) + O(x^100)) \\ Indranil Ghosh, Mar 09 2017

Formula

G.f.: 1/(1 - x - Sum_{k>=1} x^prime(k)).

A379315 Number of strict integer partitions of n with a unique 1 or prime part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 1, 3, 1, 3, 2, 7, 3, 7, 4, 10, 7, 15, 7, 17, 13, 23, 16, 31, 20, 37, 31, 48, 38, 62, 48, 76, 68, 93, 80, 119, 105, 147, 137, 175, 166, 226, 208, 267, 263, 326, 322, 407, 391, 481, 492, 586, 591, 714, 714, 849, 884, 1020, 1050, 1232, 1263
Offset: 0

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

The "old" primes are listed by A008578.

Examples

			The a(10) = 2 through a(15) = 10 partitions:
  (8,2)  (11)     (9,3)    (13)     (9,5)    (8,7)
  (9,1)  (6,5)    (10,2)   (7,6)    (12,2)   (10,5)
         (7,4)    (6,4,2)  (8,5)    (8,4,2)  (11,4)
         (8,3)             (10,3)   (9,4,1)  (12,3)
         (9,2)             (12,1)            (14,1)
         (10,1)            (6,4,3)           (6,5,4)
         (6,4,1)           (8,4,1)           (8,4,3)
                                             (8,6,1)
                                             (9,4,2)
                                             (10,4,1)
		

Crossrefs

For all prime parts we have A000586, non-strict A000607 (ranks A076610).
For no prime parts we have A096258, non-strict A002095 (ranks A320628).
For a unique composite part we have A379303, non-strict A379302 (ranks A379301).
Considering 1 nonprime gives A379305, non-strict A379304 (ranks A331915).
For squarefree instead of old prime we have A379309, non-strict A379308 (ranks A379316).
Ranked by A379312 /\ A005117 = squarefree positions of 1 in A379311.
The non-strict version is A379314.
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A376682 gives k-th differences of old primes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?(#==1||PrimeQ[#]&)]==1&]],{n,0,30}]
  • PARI
    seq(n)={Vec(sum(k=1, n, if(isprime(k) || k==1, x^k)) * prod(k=4, n, 1 + if(!isprime(k), x^k), 1 + O(x^n)), -n-1)} \\ Andrew Howroyd, Dec 28 2024

A379301 Positive integers whose prime indices include a unique composite number.

Original entry on oeis.org

7, 13, 14, 19, 21, 23, 26, 28, 29, 35, 37, 38, 39, 42, 43, 46, 47, 52, 53, 56, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 84, 86, 87, 89, 92, 94, 95, 97, 101, 103, 104, 105, 106, 107, 111, 112, 113, 114, 115, 116, 117, 119, 122, 126, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 70 are {1,3,4}, so 70 is in the sequence.
The prime indices of 98 are {1,4,4}, so 98 is not in the sequence.
		

Crossrefs

For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of one in A379300.
Partitions of this type are counted by A379302 (strict A379303).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.
- A379311 old prime, see A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],CompositeQ]]==1&]

A379304 Number of integer partitions of n with a unique prime part.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 6, 7, 9, 11, 17, 20, 26, 31, 41, 47, 62, 72, 93, 108, 136, 156, 199, 226, 279, 321, 398, 452, 555, 630, 767, 873, 1051, 1188, 1433, 1618, 1930, 2185, 2595, 2921, 3458, 3891, 4580, 5155, 6036, 6776, 7926, 8883, 10324, 11577, 13421, 15014
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(2) = 1 through a(9) = 9 partitions:
  (2)  (3)   (31)   (5)     (42)     (7)       (62)       (54)
       (21)  (211)  (311)   (51)     (43)      (71)       (63)
                    (2111)  (3111)   (421)     (431)      (621)
                            (21111)  (511)     (4211)     (711)
                                     (31111)   (5111)     (4311)
                                     (211111)  (311111)   (42111)
                                               (2111111)  (51111)
                                                          (3111111)
                                                          (21111111)
		

Crossrefs

For all prime parts we have A000607 (strict A000586), ranks A076610.
For no prime parts we have A002095 (strict A096258), ranks A320628.
Ranked by A331915 = positions of one in A257994.
For a unique composite part we have A379302 (strict A379303), ranks A379301.
The strict case is A379305.
For squarefree instead of prime we have A379308 (strict A379309), ranks A379316.
Considering 1 prime gives A379314 (strict A379315), ranks A379312.
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A095195 gives k-th differences of prime numbers.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,_?PrimeQ]==1&]],{n,0,30}]

A379305 Number of strict integer partitions of n with a unique prime part.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 2, 3, 3, 3, 3, 6, 8, 8, 8, 10, 12, 17, 18, 18, 22, 28, 30, 36, 40, 44, 52, 62, 67, 78, 87, 97, 113, 129, 137, 156, 177, 200, 227, 251, 271, 312, 350, 382, 425, 475, 521, 588, 648, 705, 785, 876, 957, 1061, 1164, 1272, 1411, 1558, 1693, 1866
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(2) = 1 through a(12) = 8 partitions (A=10, B=11):
  (2)  (3)   (31)  (5)  (42)  (7)    (62)   (54)   (82)   (B)    (93)
       (21)             (51)  (43)   (71)   (63)   (541)  (65)   (A2)
                              (421)  (431)  (621)  (631)  (74)   (B1)
                                                          (83)   (642)
                                                          (92)   (651)
                                                          (821)  (741)
                                                                 (831)
                                                                 (921)
		

Crossrefs

For all prime parts we have A000586, non-strict A000607 (ranks A076610).
For no prime parts we have A096258, non-strict A002095 (ranks A320628).
Ranked by A331915 /\ A005117 = squarefree positions of one in A257994.
For a composite instead of prime we have A379303, non-strict A379302 (ranks A379301).
The non-strict version is A379304.
For squarefree instead of prime we have A379309, non-strict A379308 (ranks A379316).
Considering 1 prime gives A379315, non-strict A379314 (ranks A379312).
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A095195 gives k-th differences of prime numbers.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?PrimeQ]==1&]],{n,0,30}]

A379309 Number of strict integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(9) = 2 through a(15) = 7 partitions:
  (5,4)  (10)   (11)   (9,3)  (13)     (14)     (15)
  (8,1)  (6,4)  (7,4)         (8,5)    (8,6)    (8,7)
         (8,2)  (8,3)         (12,1)   (9,5)    (9,6)
         (9,1)  (9,2)         (8,4,1)  (10,4)   (11,4)
                                       (12,2)   (12,3)
                                       (8,4,2)  (8,4,3)
                                       (9,4,1)  (9,4,2)
		

Crossrefs

If all parts are squarefree we have A087188, non-strict A073576 (ranks A302478).
If no parts are squarefree we have A256012, non-strict A114374 (ranks A379307).
For composite instead of squarefree we have A379303, non-strict A379302 (ranks A379301).
For prime instead of squarefree we have A379305, non-strict A379304 (ranks A331915).
The non-strict version is A379308, ranks A379316.
For old prime instead of squarefree we have A379315, non-strict A379314 (ranks A379312).
Ranked by A379316 /\ A005117 = squarefree positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
  • PARI
    lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A379312 Positive integers whose prime indices include a unique 1 or prime number.

Original entry on oeis.org

2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   14: {1,4}
   17: {7}
   21: {2,4}
   26: {1,6}
   31: {11}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   41: {13}
   46: {1,9}
   57: {2,8}
   58: {1,10}
   59: {17}
   65: {3,6}
   67: {19}
   69: {2,9}
   74: {1,12}
   77: {4,5}
		

Crossrefs

These "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of ones in A379311, see A379313.
Partitions of this type are counted by A379314, strict A379315.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]
Showing 1-10 of 38 results. Next