cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036498 Numbers of the form m*(6*m-1) and m*(6*m+1), where m is an integer.

Original entry on oeis.org

0, 5, 7, 22, 26, 51, 57, 92, 100, 145, 155, 210, 222, 287, 301, 376, 392, 477, 495, 590, 610, 715, 737, 852, 876, 1001, 1027, 1162, 1190, 1335, 1365, 1520, 1552, 1717, 1751, 1926, 1962, 2147, 2185, 2380, 2420, 2625, 2667, 2882, 2926, 3151, 3197, 3432, 3480
Offset: 1

Views

Author

Keywords

Comments

PartitionQ[ p ] is odd and contains an extra even partition; series term z^p in Product_{n>=1}(1-z^n) has coefficient (+1). - Wouter Meeussen
Numbers k such that the number of partitions of k into distinct parts with an even number of parts exceed by 1 the number of partitions of k into distinct parts with an odd number of parts. [See, e.g., the Freitag-Busam reference given under A036499, p. 410. - Wolfdieter Lang, Jan 18 2016]
In formal power series, A010815 = Product_{k>0}(1-x^k), ranks of coefficients 1 (A001318 = ranks of nonzero (1 or -1) in A010815 = ranks of odds terms in A000009).

Crossrefs

Programs

  • Magma
    [1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n): n in [1..50]]; // Vincenzo Librandi, Apr 24 2012
    
  • Magma
    /* By definition: */ A036498:=func; [0] cat [A036498(n*m): m in [-1,1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
    
  • Maple
    p1 := n->n*(6*n-1): p2 := n->n*(6*n+1): S:={}: for n from 0 to 100 do S := S union {p1(n), p2(n)} od: S
  • Mathematica
    Table[ 1/8*(-1 + (-1)^k + 2*k)*(-3 + (-1)^k + 6*k), {k, 64} ]
    CoefficientList[Series[x*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3),{x,0,50}],x] (* Vincenzo Librandi, Apr 24 2012 *)
    Rest[Flatten[{#(6#-1),#(6#+1)}&/@Range[0,30]]] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,5,7,22,26},60] (* Harvey P. Dale, Aug 13 2012 *)
  • PARI
    \ps 5000; for(n=1,5000,if(polcoeff(eta(x),n,x)==1,print1(n,",")))
    
  • PARI
    concat(0, Vec(x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3) + O(x^100))) \\ Altug Alkan, Jan 19 2016
    
  • Python
    def A036498(n): return (n*(3*n-5)>>1)+1 if n&1 else n*(3*n-1)>>1 # Chai Wah Wu, Mar 25 2025

Formula

a(n) = n(n+1)/6 for n=0 or 5 (mod 6).
a(n) = 1/8*(-1+(-1)^n+2*n)*(-3+(-1)^n+6*n) (see MATHEMATICA code).
G.f.: x^2*(5+2*x+5*x^2)/((1+x)^2*(1-x)^3). - Colin Barker, Apr 02 2012
a(1)=0, a(2)=5, a(3)=7, a(4)=22, a(5)=26, a(n)=a(n-1)+2*a(n-2)- 2*a(n-3)- a(n-4)+a(n-5). - Harvey P. Dale, Aug 13 2012
Bisections: a(2*k+1) = A001318(4*k) = k*(1+6*k) = A049453(k), k >= 0; a(2*k) = A001318(4*k-1) = k*(-1+6*k) = A049452(k), k >= 1. - Wolfdieter Lang, Jan 18 2016
From Amiram Eldar, Feb 13 2024: (Start)
Sum_{n>=2} 1/a(n) = 6 - sqrt(3)*Pi.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) + 3*log(3) - 6. (End)

Extensions

Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001
Additional comments and more terms from James Sellers, Feb 14 2001