cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000671 Number of boron trees with n nodes, i.e. n-node rooted trees with degree <= 3 at root and out-degree <= 2 elsewhere.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 14, 29, 60, 127, 275, 598, 1320, 2936, 6584, 14858, 33744, 76999, 176557, 406456, 939241, 2177573, 5064150, 11809632, 27610937, 64705623, 151966597, 357623905, 843176524, 1991439229, 4711115672, 11162025770, 26484061667, 62923251955
Offset: 0

Views

Author

Keywords

Comments

The subsequence of primes begins: 2, 7, 29, 127, 176557, 2177573, 151966597.

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 450).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 40: t1 := G001190/x: G000671 := series(x*(1/3!)*(t1^3+3*subs(x=x^2,t1)*t1+2*subs(x=x^3,t1)), x, N); A000671 := n->coeff(G000671,x,n);
    CI2 := proc(f) (1/2)*(f^2+subs(x=x^2,f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2,f)*f+2*subs(x=x^3,f)); end;
    N := 40: B0 := series(1 + x,x,N): G000671 := series(x*(CI3(B0) + CI3(G036656) + CI3(G036657) + CI2(B0)*(G036656 + G036657) + CI2(G036656)*(G036657 + B0) + CI2(G036657)*(B0 + G036656) + B0*G036656*G036657),x,N); A036658 := n->coeff(G036658,x,n);
  • Mathematica
    terms = 32; (* B = g.f. for A001190 *) B[] = 0; Do[B[x] = x + (1/2)*(B[x]^2 + B[x^2]) + O[x]^terms // Normal, terms];
    f[x_] = B[x]/x;
    A[x_] = x*(1/3!)*(f[x]^3 + 3*f[x^2]*f[x] + 2*f[x^3]) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, May 29 2012, from first g.f., updated Jan 10 2018 *)

Formula

G.f.: A(x) = x*(1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)), where f = G001190(x)/x, G001190 = g.f. for A001190.
a(n) = A001190(n) + A036657(n) + A036658(n).
Another g.f.: let B0(x) = 1+x, G036656(x) = g.f. for A036656, G036657(x) = g.f. for A036657.
Then g.f.: x*(cycle_index(S3, B0)+cycle_index(S3, G036656)+cycle_index(S3, G036657)+cycle_index(S2, B0)*(G036656+G036657)+cycle_index(S2, G036656)*(G036657+B0)+cycle_index(S2, G036657)*(B0+G036656)+B0*G036656*G036657), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).

A088326 Triangle T(n,k) (n>=1, 1<=k<=n) read by rows, giving number of Piet Hut's "coat-hanger" arrangements: unlabeled forests of rooted trees with n edges and k connected components, in which the outdegree of each node is <= 2 and the symmetric group acts on the components.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 11, 12, 6, 3, 1, 1, 23, 23, 14, 6, 3, 1, 1, 46, 52, 29, 15, 6, 3, 1, 1, 98, 109, 68, 31, 15, 6, 3, 1, 1, 207, 244, 147, 74, 32, 15, 6, 3, 1, 1, 451, 532, 337, 163, 76, 32, 15, 6, 3, 1, 1, 983, 1196, 757, 380, 169, 77, 32, 15, 6, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2003

Keywords

Examples

			See A088325 for illustration.
Triangle begins
   1
   1  1
   2  1 1
   3  3 1 1
   6  5 3 1 1
  11 12 6 3 1 1
  ...
		

Crossrefs

First 3 columns are A001190, A036657, A036658.
Row sums are A088325.
T(2n,n) gives A305839.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(g(n/2)))+add(g(i)*g(n-i), i=1..n/2))
        end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
           g(i+1)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    g[n_] := g[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][g[n/2]]] + Sum[g[i]*g[n - i], {i, 1, n/2}]];
    b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[g[i+1]+j-1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Formula

G.f.: exp( Sum_{k>=1} z^k*B(x^k)/k ), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A001190(j+1). - Alois P. Heinz, Sep 11 2017

Extensions

More terms from Vladeta Jovovic, Nov 06 2003
Showing 1-2 of 2 results.