cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036671 Number of isomers C_n H_{2n} without double bonds.

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 29, 73, 185, 475, 1231, 3232, 8506, 22565, 60077, 160629, 430724, 1158502, 3122949, 8437289, 22836877, 61918923, 168139339, 457225555, 1244935251, 3393754661, 9261681937, 25301337669, 69184724389, 189349490641
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of simple unicyclic graphs on n unlabeled vertices with all degrees at most 4. See table 1 in Michael A. Kappler reference. - Jonathan Vos Post, Dec 07 2005, Andrew Howroyd, May 22 2018

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991). See page 335 Table 1.
  • J. B. Hendrikson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 3 on page 103.

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); g}
    seq(n)={my(t=G(n-2)); t=x*(t^2+subst(t,x,x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, -n)} \\ Andrew Howroyd, May 22 2018

Formula

Polya reference gives an explicit g.f.; so does Parks et al.

Extensions

More terms from Vladeta Jovovic, Aug 19 2001