A036690 Product of a prime and the following number.
6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102
Offset: 1
Examples
a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p^2+p: p in PrimesUpTo(250)]; // Vincenzo Librandi, Dec 19 2010
-
Mathematica
Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* Artur Jasinski, Feb 06 2007 *)
-
PARI
a(n)=my(p=prime(n)); p*(p+1) \\ Charles R Greathouse IV, Mar 27 2020
Formula
a(n) = prime(n)*(prime(n)+1).
a(n) = A060800(n) - 1.
a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
Sum_{n>=1} 1/a(n) = A179119. - R. J. Mathar, Mar 31 2025
Comments