cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036691 Compositorial numbers: product of first n composite numbers.

Original entry on oeis.org

1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
Offset: 0

Views

Author

Keywords

Comments

a(A196415(n)) = A141092(n) * A053767(A196415(n)). - Reinhard Zumkeller, Oct 03 2011
For n>11, A000142(n) < a(n) < A002110(n). - Chayim Lowen, Aug 18 2015
For n = {2,3,4}, a(n) is testably a Zumkeller number (A083207). For n > 4, a(n) is of the form 2^e_1 * p_2^e_2 * … * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) < e_1. Therefore, 2^e * p_m^e_m is primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number. Therefore, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m is a Zumkeller number. Therefore, for n > 1, a(n) is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 04 2020

Examples

			a(3) = c(1)*c(2)*c(3) = 4*6*8 = 192.
		

Crossrefs

Cf. primorial numbers A002110. Distinct members of A049614. See also A049650, A060880.
Cf. A092435 (subsequence: A092435(n) = a(prime(n)-n-1)). - Chayim Lowen, Jul 23 2015

Programs

  • Haskell
    a036691_list = scanl1 (*) a002808_list -- Reinhard Zumkeller, Oct 03 2011
    
  • Maple
    A036691 := proc(n)
            mul(A002808(i),i=1..n) ;
    end proc: # R. J. Mathar, Oct 03 2011
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Product[ Composite[i], {i, 1, n}], {n, 0, 18}] (* Robert G. Wilson v, Sep 13 2003 *)
    nn=50;cnos=Complement[Range[nn],Prime[Range[PrimePi[nn]]]];Rest[FoldList[ Times,1,cnos]] (* Harvey P. Dale, May 19 2011 *)
    A036691 = Union[Table[n!/(Times@@Prime[Range[PrimePi[n]]]), {n, 29}]] (* Alonso del Arte, Sep 21 2011 *)
    Join[{1},FoldList[Times,Select[Range[30],CompositeQ]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 14 2019 *)
  • PARI
    a(n)=my(c,p);c=4;p=1;while(n>0,if(!isprime(c),p=p*c;n=n-1);c=c+1);p \\ Ralf Stephan, Dec 21 2013
    
  • Python
    from sympy import factorial, primepi, primorial, composite
    def A036691(n):
        return factorial(composite(n))//primorial(primepi(composite(n))) if n > 0 else 1 # Chai Wah Wu, Sep 08 2020

Formula

From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = Product_{k=1..A002808(n)-n-1} prime(k)^(A085604(A002808(n),k)-1).
Sum_{k >= 1} 1/a(k) = 1.2975167655550616507663335821769... is to this sequence as e is to the factorials. (End)

Extensions

Corrected and extended by Niklas Eriksen (f95-ner(AT)nada.kth.se) and N. J. A. Sloane