cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036744 Penholodigital squares: squares containing each of the digits 1..9 exactly once.

Original entry on oeis.org

139854276, 152843769, 157326849, 215384976, 245893761, 254817369, 326597184, 361874529, 375468129, 382945761, 385297641, 412739856, 523814769, 529874361, 537219684, 549386721, 587432169, 589324176, 597362481, 615387249, 627953481, 653927184, 672935481, 697435281, 714653289, 735982641, 743816529, 842973156, 847159236, 923187456
Offset: 1

Views

Author

Keywords

Comments

Improved Mathematica formula provided. Because the range involved is only from Ceiling[Sqrt[123456789]]=11112 and Floor[Sqrt[987654321]]=31427, it only requires analyzing 20,315 numbers, versus 362,880 permutations of nine digits (as in the current formula). - Harvey P. Dale, Apr 17 2002
Since the sum of the digits is 45, the squares are all divisible by 3, so the given Mathematica formula could be sped up by a factor of 3, checking only multiples of 3 rather than all squares. - Joshua Zucker, Nov 28 2005
Eight-digit analog gives 5 squares: 13527684, 34857216, 65318724, 73256481, 81432576. - Zak Seidov, Mar 01 2011

Crossrefs

Programs

  • Maple
    lim:=floor(sqrt(987654321)): for n from 11112 by 3 to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 1 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ", n^2): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    Select[Range[11112, 31427]^2, Union[Drop[DigitCount[ # ], -1]] == {1} &]
  • PARI
    A036744 = [n^2 | n <- A071519] \\ or less efficient & more explicit:
    A036744 = [n^2 | n <- [1e5\9..1e5\3], vecsort(digits(n^2)) == [1..9]] \\ M. F. Hasler, Jun 28 2023

Formula

a(n) = A071519(n)^2.

Extensions

More terms from Harvey P. Dale, Sep 26 2001
Keyword base added by Reinhard Zumkeller, May 16 2010