cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036767 Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 421, 1385, 4642, 15795, 54418, 189454, 665471, 2355510, 8393461, 30084695, 108394449, 392356788, 1426137550, 5203211200, 19048447855, 69951072700, 257609070810, 951172531880, 3520465229446, 13058843476526, 48540377627407
Offset: 0

Views

Author

Keywords

Comments

Empirical: number of Dyck n-paths avoiding UUUUUU (or DDDDDD). e.g. of the 132 Dyck 6-paths U^6D^6 contains UUUUUU so a(6)=131. - David Scambler, Mar 24 2011
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 5 children. - Geoffrey Critzer, Jan 05 2013

Crossrefs

Column k=5 of A288942.

Programs

  • Maple
    r := 5; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(5, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    nn=12;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4- x f[x]^5,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Jan 05 2013 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,5,x^k)+O(x^(n+2))),n+1)) \\ Ralf Stephan

Formula

G.f. A(x) satisfies A(x) = 1 + sum(n=1..5, (x*A(x))^n). - Vladimir Kruchinin, Feb 22 2011

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017