cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036791 Continued fraction for (2/Pi)*Integral_{x=0..Pi} sin(x)/x.

Original entry on oeis.org

1, 5, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 9, 24, 1, 3, 1, 7, 1, 5, 1, 2, 2, 3, 1, 2, 2, 1, 8, 11, 4, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 23, 1, 3, 3, 1, 6, 2, 9, 1, 3, 2, 17, 1, 5, 3, 1, 8, 1, 1, 1, 1, 1, 4, 1, 5, 1, 2, 1, 38, 1, 5, 5, 2, 6, 2, 73, 1, 1, 1, 194, 27, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion for Integrate[Binomial[1,x], {x,0,1}]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006
Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... - Harry J. Smith, Apr 28 2009

Examples

			1.178979744472167270232028845... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 28 2009
		

Crossrefs

Cf. A036793 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[N[Integrate[Binomial[1, x], {x, 0, 1}], 120]] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; x=contfrac(x); for (n=1, 20000, write("b036791.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 28 2009

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024