cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036826 a(n) = A036800(n)/2.

Original entry on oeis.org

0, 1, 9, 45, 173, 573, 1725, 4861, 13053, 33789, 84989, 208893, 503805, 1196029, 2801661, 6488061, 14876669, 33816573, 76283901, 170917885, 380633085, 843055101, 1858076669, 4076863485, 8908701693, 19394461693, 42077257725, 90999619581, 196226318333
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A054569 (with leading 0). Partial sums of A014477 (with leading 0). - Paul Barry, Jun 11 2003
This sequence is related to A000337 by a(n) = n*A000337(n) - Sum_{i=0..n-1} A000337(i). - Bruno Berselli, Mar 06 2012

Crossrefs

Programs

  • Magma
    m:=28; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+2*x)/((1-x)*(1-2*x)^3))); // Bruno Berselli, Mar 06 2012
    
  • Maple
    A036826:= n-> 2^n*(3-2*n+n^2) -3; seq(A036826(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    LinearRecurrence[{7,-18,20,-8}, {0,1,9,45}, 29] (* Bruno Berselli, Mar 06 2012 *)
  • PARI
    for(n=0, 28, print1(2^n*(n^2-2*n+3)-3", ")); \\ Bruno Berselli, Mar 06 2012
    
  • Sage
    [2^n*(3-2*n+n^2) -3 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

From Paul Barry, Jun 11 2003: (Start)
G.f.: x*(1+2*x)/((1-x)*(1-2*x)^3).
a(n) = 2^n*(n^2-2*n+3) - 3.
a(n) = Sum_{k=0..n} k^2*2^(k-1). (End)
a(n) = 7*a(n-1) -18*a(n-2) +20*a(n-3) -8*a(n-4). - Harvey P. Dale, Mar 04 2015
E.g.f.: -3*exp(x) + (3 -2*x +4*x^2)*exp(2*x). - G. C. Greubel, Mar 31 2021