cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A054569 a(n) = 4*n^2 - 6*n + 3.

Original entry on oeis.org

1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, 1057, 1191, 1333, 1483, 1641, 1807, 1981, 2163, 2353, 2551, 2757, 2971, 3193, 3423, 3661, 3907, 4161, 4423, 4693, 4971, 5257, 5551, 5853, 6163, 6481, 6807, 7141, 7483, 7833, 8191
Offset: 1

Views

Author

Keywords

Comments

Move in 1-7 direction in a spiral organized like A068225 etc.
Third row of A082039. - Paul Barry, Apr 02 2003
Inverse binomial transform of A036826. - Paul Barry, Jun 11 2003
Equals the "middle sequence" T(2*n,n) of the Connell sequence A001614 as a triangle. - Johannes W. Meijer, May 20 2011
Ulam's spiral (SW spoke). - Robert G. Wilson v, Oct 31 2011

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n+1) = 4*n^2 + 2*n + 1. - Paul Barry, Apr 02 2003
a(n) = 4*n^2 - 6*n+3 - 3*0^n (with leading zero). - Paul Barry, Jun 11 2003
Binomial transform of [1, 6, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
a(n) = 8*n + a(n-1) - 10 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Mar 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1+x)*(1+3*x)/(1-x)^3. (End)
a(n) = A000384(n) + A000384(n-1). - Bruce J. Nicholson, May 07 2017
E.g.f.: -3 + (3 - 2*x + 4*x^2)*exp(x). - G. C. Greubel, Jul 04 2019
Sum_{n>=1} 1/a(n) = A339237. - R. J. Mathar, Jan 22 2021

Extensions

Edited by Frank Ellermann, Feb 24 2002

A014477 Expansion of (1 + 2*x)/(1 - 2*x)^3.

Original entry on oeis.org

1, 8, 36, 128, 400, 1152, 3136, 8192, 20736, 51200, 123904, 294912, 692224, 1605632, 3686400, 8388608, 18939904, 42467328, 94633984, 209715200, 462422016, 1015021568, 2218786816, 4831838208, 10485760000, 22682796032, 48922361856, 105226698752, 225754218496
Offset: 0

Views

Author

Keywords

Comments

The sequence 0,1,8,... has a(n) = n^2*2^(n-1) and is the binomial transform of the hexagonal numbers A000384 (with leading 0). - Paul Barry, Jun 09 2003
As 0,1,8,... this is n^2*2^(n-1), the binomial transform of the hexagonal numbers A000384 (include the leading 0). Partial sums are A036826. - Paul Barry, Jun 10 2003
Sequence gives total value of all possible sums of distinct odd integers with maximum term less than 2n+1. E.g., for a(3) we can have the sums 1, 3, 5, 1+3, 1+5, 3+5, 1+3+5, which sum to 1+3+5+4+6+8+9 = 36. - Jon Perry, Feb 06 2004
Number of edges on a partially truncated (n+1)-cube (column 2 of A271316).

Crossrefs

Programs

Formula

O.g.f.: (1 + 2*x)/(1 - 2*x)^3 (see the name).
a(n) = (n+1)^2*2^n = A007758(n+1)/2. - Henry Bottomley, Jun 13 2001
The binomial transform of 0, 1, 8, ... is A077616. - Paul Barry, Jul 24 2003
a(1)=1, a(n) = 2a(n-1) + (2n-1)*2^(n-1). - Jon Perry, Feb 06 2004
a(n) = sum of (n+1)-th row of the triangle in A118416. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{j=0..n} binomial(n,j)*n*j. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(2*x)*(1 + 6*x + 8*x^2/2!). - Wolfdieter Lang, Jul 29 2017
Sum_{n>=0} 1/a(n) = Pi^2/6 - log(2)^2. - Daniel Suteu, Oct 31 2017
Sum_{n>=0} (-1)^n/a(n) = -2 * Li_2(-1/2) = -2 * A355234. - Amiram Eldar, Oct 01 2022

A036800 a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).

Original entry on oeis.org

0, 2, 18, 90, 346, 1146, 3450, 9722, 26106, 67578, 169978, 417786, 1007610, 2392058, 5603322, 12976122, 29753338, 67633146, 152567802, 341835770, 761266170, 1686110202, 3716153338, 8153726970, 17817403386, 38788923386
Offset: 0

Views

Author

Keywords

Comments

This sequence is a part of a class of sequences of the type: a(n) = sum(i=0,n,(C^i)*(i^k)). This sequence has C=2, k=2. Sequence A036799 has C=2, k=1. Suppose C>=2, k>=1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.
  • Jolley, Summation of Series, Dover (1961), p. 6.

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} 2^k * k^2. - Benoit Cloitre, Jun 11 2003
From R. J. Mathar, Oct 03 2011: (Start)
G.f.: 2*x*(1+2*x) / ( (1-x)*(1-2*x)^3 ).
a(n) = 2*A036826(n). (End)
a(0)=0, a(1)=2, a(2)=18, a(3)=90, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Jun 13 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*(3 -2*x +4*x^2)*exp(2*x) -6*exp(x). - G. C. Greubel, Mar 31 2021

A209359 a(n) = 2^n * (n^4 - 4*n^3 + 18*n^2 - 52*n + 75) - 75.

Original entry on oeis.org

0, 1, 33, 357, 2405, 12405, 53877, 207541, 731829, 2411445, 7531445, 22523829, 64991157, 181977013, 496680885, 1326120885, 3473604533, 8947236789, 22706651061, 56869519285, 140755599285, 344683708341, 835954147253, 2009692372917, 4792831180725, 11346431180725
Offset: 0

Views

Author

Bruno Berselli, Mar 07 2012

Keywords

Comments

This sequence is related to A036828 by the transform a(n) = n*A036828(n) - sum(A036828(i), i=0..n-1).

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5)));
    
  • Mathematica
    LinearRecurrence[{11, -50, 120, -160, 112, -32}, {0, 1, 33, 357, 2405, 12405}, 26]
    Table[2^n(n^4-4n^3+18n^2-52n+75)-75,{n,0,30}] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    for(n=0, 25, print1(2^n*(n^4-4*n^3+18*n^2-52*n+75)-75", "));

Formula

G.f.: x*(1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5).
a(n) = (1/2) * Sum_{k=0..n} Sum_{i=0..n} k^4 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017

A036828 A036827/2.

Original entry on oeis.org

0, 1, 17, 125, 637, 2637, 9549, 31501, 97037, 283661, 795661, 2158605, 5697549, 14696461, 37175309, 92471309, 226689037, 548667405, 1313079309, 3111125005, 7305429005, 17016291341, 39346765837, 90378862605, 206342979597, 468486979597, 1058239676429
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A036826 by a(n) = n*A036826(n) - Sum_{i=0..n-1} A036826(i). - Bruno Berselli, Mar 06 2012

Crossrefs

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(-(4*x^2+8*x+1)/((x-1)*(2*x-1)^4))); // Bruno Berselli, Mar 06 2012
    
  • Mathematica
    LinearRecurrence[{9, -32, 56, -48, 16}, {0, 1, 17, 125, 637}, 27] (* Bruno Berselli, Mar 06 2012 *)
  • PARI
    a(n) = 2^n*(n^3-3*n^2+9*n-13)+13 \\ Bruno Berselli, Mar 06 2012

Formula

G.f.: -x*(4*x^2+8*x+1)/((x-1)*(2*x-1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 13 2009
a(n) = 2^n*(n^3-3*n^2+9*n-13)+13. - Bruno Berselli, Mar 06 2012

Extensions

Typo in definition corrected by R. J. Mathar, Sep 16 2009

A248830 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x-2k)^k for 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 3, 9, 1, 3, 45, 19, 1, 3, 173, 211, 33, 1, 3, 573, 1811, 633, 51, 1, 3, 1725, 13331, 9273, 1491, 73, 1, 3, 4861, 88595, 115113, 32851, 3013, 99, 1, 3, 13053, 547347, 1276329, 606291, 92613, 5475, 129, 1, 3, 33789, 3201555, 13033641, 9896019, 2360613, 223203, 9201, 163, 1, 3, 84989, 17947155, 125008041, 147521619, 52760613, 7480803, 479601, 14563, 201, 1
Offset: 0

Views

Author

Derek Orr, Oct 15 2014

Keywords

Comments

Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-0)^0 + A_1*(x-2)^1 + A_2*(x-4)^2 + ... + A_n*(x-2n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			1;
3,     1;
3,     9,       1;
3,    45,      19,        1;
3,   173,     211,       33,       1;
3,   573,    1811,      633,      51,       1;
3,  1725,   13331,     9273,    1491,      73,      1;
3,  4861,   88595,   115113,   32851,    3013,     99,    1;
3, 13053,  547347,  1276329,  606291,   92613,   5475,  129,   1;
3, 33789, 3201555, 13033641, 9896019, 2360613, 223203, 9201, 163, 1;
		

Crossrefs

Programs

  • PARI
    for(n=0,10,for(k=0,n,if(!k,if(n,print1(3,", "));if(!n,print1(1,", ")));if(k,print1(sum(i=1,n,((2*k)^(i-k)*i*binomial(i,k)))/k,", "))))

Formula

T(n,n-1) = 2*n^2 + 1 for n > 0.
T(n,1) = 2^n*(n^2-2*n+3)-3 for n > 0.

A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1

Views

Author

Fedor Igumnov, Jan 28 2014

Keywords

Comments

1, 9, 45, 161, 497, 1409, ... is the sequence of perimeters (sum of border elements) of the triangle.
1, 5, 80, 3520, 394240, 107233280, 68629299200, ... is the sequence of determinants of the triangle.
Only the first three terms are odd.

Examples

			Triangle begins:
================================================
\k |    1     2     3     4     5     6     7
n\ |
================================================
1  |    1;
2  |    3,    5;
3  |    8,   12,   16;
4  |   20,   28,   36,   44;
5  |   48,   64,   80,   96,  112;
6  |  112,  144,  176,  208,  240,  272;
7  |  256,  320,  384,  448,  512,  576,  640;
...
		

Crossrefs

Cf. A001792 (column 1), A053220 (right border). Also:
A014477, row sums;
A036826, partial sums;
A058962, central elements in odd rows;
A045623, second column;
A045891, third column;
A034007, fourth column;
A167667, subdiagonal;
A130129, second subdiagonal.

Programs

  • C
    int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
    
  • Magma
    /* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
  • Mathematica
    t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)

Formula

T(n,k) = T(n-1,k) + T(n-1,k+1).
Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1).

Extensions

More terms from Bruno Berselli, Jan 28 2014

A337631 a(n) is the sum of the squares of diameters of all nonempty subsets of {1,2,...,n}.

Original entry on oeis.org

0, 1, 10, 55, 228, 801, 2526, 7387, 20440, 54229, 139218, 348111, 851916, 2047945, 4849606, 11337667, 26214336, 60030909, 136314810, 307232695, 687865780, 1530920881, 3388997550, 7465861035, 16374562728, 35769024421, 77846282146, 168845901727
Offset: 1

Views

Author

Enrique Navarrete, Sep 20 2020

Keywords

Comments

Partial sums of A036826.
For the sum of diameters of subsets of {1,2,...,n} see A045618.

Examples

			For n = 3, the nonempty subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3}; the diameters of these sets are 0,0,0,1,1,2,2 and the sum of the squares of these numbers is 10.
		

Crossrefs

Formula

From Stefano Spezia, Sep 21 2020: (Start)
G.f.: x*(1 + 2*x)/((1 - x)^2*(1 - 2*x)^3).
a(n) = 8*a(n-1) - 25*a(n-2) + 38*a(n-3) - 28*a(n-4) + 8*a(n-5) for n > 4.
a(n) = 2^(n+1)*(n^2 - 4*n + 8) - 3*n - 16. (End)
Showing 1-8 of 8 results.