A054569
a(n) = 4*n^2 - 6*n + 3.
Original entry on oeis.org
1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, 1057, 1191, 1333, 1483, 1641, 1807, 1981, 2163, 2353, 2551, 2757, 2971, 3193, 3423, 3661, 3907, 4161, 4423, 4693, 4971, 5257, 5551, 5853, 6163, 6481, 6807, 7141, 7483, 7833, 8191
Offset: 1
-
List([1..50], n-> 4*n^2-6*n+3); # G. C. Greubel, Jul 04 2019
-
[4*n^2-6*n+3: n in [1..50]]; // G. C. Greubel, Jul 04 2019
-
f[n_]:= 4*n^2-6*n+3; Array[f, 50] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
LinearRecurrence[{3,-3,1},{1,7,21},50] (* Harvey P. Dale, Nov 17 2012 *)
-
a(n)=4*n^2-6*n+3 \\ Charles R Greathouse IV, Sep 24 2015
-
[4*n^2-6*n+3 for n in (1..50)] # G. C. Greubel, Jul 04 2019
A014477
Expansion of (1 + 2*x)/(1 - 2*x)^3.
Original entry on oeis.org
1, 8, 36, 128, 400, 1152, 3136, 8192, 20736, 51200, 123904, 294912, 692224, 1605632, 3686400, 8388608, 18939904, 42467328, 94633984, 209715200, 462422016, 1015021568, 2218786816, 4831838208, 10485760000, 22682796032, 48922361856, 105226698752, 225754218496
Offset: 0
-
[(n+1)^2*2^n: n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
-
a:=n->sum(binomial(n,j)*n*j,j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Oct 19 2006
a:=n->sum(n*numbcomb(n)/2, j=1..n): seq(a(n), n=1..25); # Zerinvary Lajos, Apr 25 2007
-
f[n_]:=(n^2*2^n)/2;Table[f[n],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2009 *)
-
a(n)=(n+1)^2*2^n \\ Charles R Greathouse IV, Apr 07 2016
A036800
a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).
Original entry on oeis.org
0, 2, 18, 90, 346, 1146, 3450, 9722, 26106, 67578, 169978, 417786, 1007610, 2392058, 5603322, 12976122, 29753338, 67633146, 152567802, 341835770, 761266170, 1686110202, 3716153338, 8153726970, 17817403386, 38788923386
Offset: 0
- M. Petkovsek et al., A=B, Peters, 1996, p. 97.
- Jolley, Summation of Series, Dover (1961), p. 6.
-
[-6+2^(n+1)*(3-2*n+n^2): n in [0..30]]; // Vincenzo Librandi, Oct 04 2011
-
A036800:= n-> 2^(n+1)*(3-2*n+n^2) -6; seq(A036800(n), n=0..30); # G. C. Greubel, Mar 31 2021
-
Table[ -6+2^(n+1)*(3-2*n+n^2),{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
LinearRecurrence[{7,-18,20,-8},{0,2,18,90},30] (* Harvey P. Dale, Jun 13 2015 *)
-
a(n)=2^(n+1)*(3 - 2*n + n^2) - 6 \\ Charles R Greathouse IV, Jun 11 2015
-
[2^(n+1)*(3-2*n+n^2) -6 for n in (0..30)] # G. C. Greubel, Mar 31 2021
A209359
a(n) = 2^n * (n^4 - 4*n^3 + 18*n^2 - 52*n + 75) - 75.
Original entry on oeis.org
0, 1, 33, 357, 2405, 12405, 53877, 207541, 731829, 2411445, 7531445, 22523829, 64991157, 181977013, 496680885, 1326120885, 3473604533, 8947236789, 22706651061, 56869519285, 140755599285, 344683708341, 835954147253, 2009692372917, 4792831180725, 11346431180725
Offset: 0
-
m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5)));
-
LinearRecurrence[{11, -50, 120, -160, 112, -32}, {0, 1, 33, 357, 2405, 12405}, 26]
Table[2^n(n^4-4n^3+18n^2-52n+75)-75,{n,0,30}] (* Harvey P. Dale, Mar 08 2023 *)
-
for(n=0, 25, print1(2^n*(n^4-4*n^3+18*n^2-52*n+75)-75", "));
Original entry on oeis.org
0, 1, 17, 125, 637, 2637, 9549, 31501, 97037, 283661, 795661, 2158605, 5697549, 14696461, 37175309, 92471309, 226689037, 548667405, 1313079309, 3111125005, 7305429005, 17016291341, 39346765837, 90378862605, 206342979597, 468486979597, 1058239676429
Offset: 0
-
m:=26; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(-(4*x^2+8*x+1)/((x-1)*(2*x-1)^4))); // Bruno Berselli, Mar 06 2012
-
LinearRecurrence[{9, -32, 56, -48, 16}, {0, 1, 17, 125, 637}, 27] (* Bruno Berselli, Mar 06 2012 *)
-
a(n) = 2^n*(n^3-3*n^2+9*n-13)+13 \\ Bruno Berselli, Mar 06 2012
A248830
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x-2k)^k for 0 <= k <= n.
Original entry on oeis.org
1, 3, 1, 3, 9, 1, 3, 45, 19, 1, 3, 173, 211, 33, 1, 3, 573, 1811, 633, 51, 1, 3, 1725, 13331, 9273, 1491, 73, 1, 3, 4861, 88595, 115113, 32851, 3013, 99, 1, 3, 13053, 547347, 1276329, 606291, 92613, 5475, 129, 1, 3, 33789, 3201555, 13033641, 9896019, 2360613, 223203, 9201, 163, 1, 3, 84989, 17947155, 125008041, 147521619, 52760613, 7480803, 479601, 14563, 201, 1
Offset: 0
1;
3, 1;
3, 9, 1;
3, 45, 19, 1;
3, 173, 211, 33, 1;
3, 573, 1811, 633, 51, 1;
3, 1725, 13331, 9273, 1491, 73, 1;
3, 4861, 88595, 115113, 32851, 3013, 99, 1;
3, 13053, 547347, 1276329, 606291, 92613, 5475, 129, 1;
3, 33789, 3201555, 13033641, 9896019, 2360613, 223203, 9201, 163, 1;
-
for(n=0,10,for(k=0,n,if(!k,if(n,print1(3,", "));if(!n,print1(1,", ")));if(k,print1(sum(i=1,n,((2*k)^(i-k)*i*binomial(i,k)))/k,", "))))
A236538
Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.
Original entry on oeis.org
1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1
Triangle begins:
================================================
\k | 1 2 3 4 5 6 7
n\ |
================================================
1 | 1;
2 | 3, 5;
3 | 8, 12, 16;
4 | 20, 28, 36, 44;
5 | 48, 64, 80, 96, 112;
6 | 112, 144, 176, 208, 240, 272;
7 | 256, 320, 384, 448, 512, 576, 640;
...
A058962, central elements in odd rows;
-
int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
-
/* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
-
t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)
A337631
a(n) is the sum of the squares of diameters of all nonempty subsets of {1,2,...,n}.
Original entry on oeis.org
0, 1, 10, 55, 228, 801, 2526, 7387, 20440, 54229, 139218, 348111, 851916, 2047945, 4849606, 11337667, 26214336, 60030909, 136314810, 307232695, 687865780, 1530920881, 3388997550, 7465861035, 16374562728, 35769024421, 77846282146, 168845901727
Offset: 1
For n = 3, the nonempty subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3}; the diameters of these sets are 0,0,0,1,1,2,2 and the sum of the squares of these numbers is 10.
Showing 1-8 of 8 results.
Comments