cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037032 Total number of prime parts in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 20, 32, 48, 73, 105, 153, 214, 302, 415, 569, 767, 1034, 1371, 1817, 2380, 3110, 4025, 5199, 6659, 8512, 10806, 13684, 17229, 21645, 27049, 33728, 41872, 51863, 63988, 78779, 96645, 118322, 144406, 175884, 213617, 258957, 313094, 377867
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the sum of the differences between the sum of p-th largest and the sum of (p+1)st largest elements in all partitions of n for all primes p. - Omar E. Pol, Oct 25 2012

Examples

			From _Omar E. Pol_, Nov 20 2011 (Start):
For n = 6 we have:
--------------------------------------
.                        Number of
Partitions              prime parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
5 + 1 ...................... 1
3 + 2 + 1 .................. 2
4 + 1 + 1 .................. 0
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 1
2 + 1 + 1 + 1 + 1 .......... 1
1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
Total ..................... 13
So a(6) = 13.
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=proc(n) local P,c,j,i: P:=partition(n): c:=0: for j from 1 to numbpart(n) do for i from 1 to nops(P[j]) do if isprime(P[j][i])=true then c:=c+1 else c:=c fi: od: od: c: end: seq(a(n),n=1..42); # Emeric Deutsch, Mar 30 2006
    # second Maple program
    b:= proc(n, i) option remember; local g;
          if n=0 or i=1 then [1, 0]
        else g:= `if`(i>n, [0$2], b(n-i, i));
             b(n, i-1) +g +[0, `if`(isprime(i), g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 27 2012
  • Mathematica
    a[n_] := Sum[PrimeNu[k]*PartitionsP[n - k], {k, 1, n}]; Array[a, 100] (* Jean-François Alcover, Mar 16 2015, after Vladeta Jovovic *)
  • PARI
    a(n)={sum(k=1, n, omega(k)*numbpart(n-k))} \\ Andrew Howroyd, Dec 28 2017

Formula

a(n) = Sum_{k=1..n} A001221(k)*A000041(n-k). - Vladeta Jovovic, Aug 22 2002
a(n) = Sum_{k=1..floor(n/2)} k*A222656(n,k). - Alois P. Heinz, May 29 2013
G.f.: Sum_{i>=1} x^prime(i)/(1 - x^prime(i)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017

Extensions

More terms from Naohiro Nomoto, Apr 19 2002