A084437 Duplicate of A037083.
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 17, 24, 29, 39, 40, 57, 58, 59, 91, 155, 175, 245, 359, 372
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
11!!! + 1 = 11*8*5*2 + 1 = 881 is prime.
Select[Table[Times@@Range[n,1,-3]+1,{n,60}],PrimeQ] (* Harvey P. Dale, Jul 09 2014 *)
a(4) = 8 since 8!!! - 1 = 8*5*2 - 1 = 79 is the 4th prime of that form. 26!!! - 1 = 2504902399 is prime.
multiFactorial[n_, k_] := If[n < 1, 1, n * multiFactorial[n - k, k]]; Select[Range[0, 1000], PrimeQ[multiFactorial[#, 3] - 1] & ] (* Robert Price, Apr 19 2019 *) Select[Range[650], PrimeQ[Times @@ Range[#, 1, -3] - 1] &] (* The program generates the first 17 terms of the sequence. To generate more, change the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, May 22 2021 *)
A007661(n) = prod(i=1,(n-1)\3,n-=3,n+!n) for(n=1,999,if(isprime(A007661(n)-1),print1(n","))) \\ M. F. Hasler, Nov 26 2007
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 10] + 2] &]
for(n=0,9999,isprime(prod(i=0,(n-2)\10,n-10*i)+2)& print1(n","))
mf[n_, k_] := Product[n - i k, {i, 0, Quotient[n - 2, k]}]; Reap[For[k = 0, k <= 2000, k++, If[PrimeQ[mf[k, 7] + 1], Sow[k]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *) Select[Range[0,2000],PrimeQ[Times@@Range[#,1,-7]+1]&] (* Harvey P. Dale, Aug 21 2021 *)
mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k) for( n=0,9999, ispseudoprime(mf(n)+1) & print1(n","))
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[1000], PrimeQ[MultiFactorial[#, 9] - 1] & ] (* Robert Price, Apr 19 2019 *)
for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)-1)& print1(n","))
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 9] + 1] & ] (* Robert Price, Apr 19 2019 *) Select[Range[0,800],PrimeQ[Times@@Range[#,1,-9]+1]&] (* Harvey P. Dale, Aug 19 2021 *)
for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)+1)& print1(n","))
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[1000], PrimeQ[MultiFactorial[#, 10] - 1] & ] (* Robert Price, Apr 19 2019 *)
for(n=0,9999,isprime(prod(i=0,(n-2)\10,n-10*i)-1)& print1(n","))
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] + 1] & ] (* Robert Price, Apr 19 2019 *) Select[Range[0,46000],PrimeQ[Times@@Range[#,1,-8]+1]&] (* Harvey P. Dale, Apr 12 2022 *)
for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+1)& print1(n","))
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] - 1] & ] (* Robert Price, Apr 19 2019 *)
for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-1)& print1(n","))
Comments