A037156 a(n) = 10^n*(10^n+1)/2.
1, 55, 5050, 500500, 50005000, 5000050000, 500000500000, 50000005000000, 5000000050000000, 500000000500000000, 50000000005000000000, 5000000000050000000000, 500000000000500000000000, 50000000000005000000000000, 5000000000000050000000000000
Offset: 0
Examples
From _Omar E. Pol_, May 03 2015: (Start) For n = 0; a(0) = 1 = 1 * 1 = 1 For n = 1; a(1) = 1 + 2 + ...... + 9 + 10 = 11 * 5 = 55 For n = 2; a(2) = 1 + 2 + .... + 99 + 100 = 101 * 50 = 5050 For n = 3; a(3) = 1 + 2 + .. + 999 + 1000 = 1001 * 500 = 500500 ... (End)
References
- C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 328.
Links
- Brian Hayes, Gauss's Day of Reckoning, American Scientist
- Bill Johnson, The great Gauss summation trick
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- Index entries for linear recurrences with constant coefficients, signature (110, -1000).
Programs
-
Mathematica
LinearRecurrence[{110,-1000},{1,55},20] (* Harvey P. Dale, Oct 11 2023 *)
Formula
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: (1 - 55*x)/((10*x - 1)*(100*x - 1)).
(End)
a(n) = sqrt(A038544(n)). - Bernard Schott, Jan 20 2022
Extensions
Corrected by T. D. Noe, Nov 07 2006
Comments