cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037169 a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).

Original entry on oeis.org

2, 3, 10, 28, 176, 416, 2176, 4864, 23552, 178176, 380928, 2727936, 12091392, 25362432, 110886912, 750256128, 5011144704, 10362028032, 68287463424, 289457307648, 595222069248, 3864866586624, 16242224136192, 104498164924416, 911130067206144, 3794809764446208, 7739909024514048
Offset: 1

Views

Author

Armand Turpel (armandt(AT)unforgettable.com)

Keywords

Comments

If A_n is the n X n matrix a(i,j)=min(prime(i), prime(j)) then det(M_n)/det(A_n)=prime(n)/2.

Programs

  • Mathematica
    Table[Prime[n]Product[Mod[Prime[n-k],Prime[n-k-1]],{k,0,n-2}],{n,30}] (* Harvey P. Dale, Jul 16 2017 *)
  • PARI
    a(n) = prime(n)*prod(k=0, n-2, prime(n-k) % prime(n-k-1)); \\ Michel Marcus, Aug 13 2022

Formula

Let M_n be the n X n matrix m(i, j)=Max(prime(i), prime(j)); then a(n)=(-1)^(n+1)*det(M_n). - Benoit Cloitre, May 11 2002

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Sep 27 2000
More terms from Michel Marcus, Aug 13 2022