A037197 Numbers k such that tau(sigma(k)) = tau(k) where tau(k) is the number of divisors of k and sigma(k) their sum.
1, 2, 8, 12, 32, 52, 75, 84, 90, 98, 128, 150, 156, 338, 360, 392, 525, 528, 560, 600, 722, 867, 912, 972, 1050, 1352, 1452, 1456, 1525, 1734, 1922, 2064, 2160, 2340, 2400, 2888, 2890, 3050, 3120, 3216, 3698, 3744, 3872, 4080, 4144, 4200, 4500, 4575
Offset: 1
Keywords
Examples
k = 75: divisors(75) = {1, 3, 5, 15, 25, 75}, divisors(sigma(75)) = divisors(124) = {1, 2, 4, 31, 62, 124}, both 75 and sigma(75) have 6 divisors, so 75 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
Programs
-
Mathematica
Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}] Select[Range[4600],DivisorSigma[0,#]==DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Feb 08 2025 *)
-
PARI
is(n)=numdiv(sigma(n))==numdiv(n) \\ Charles R Greathouse IV, Feb 13 2013
Formula
Conjecture: for n > 10^6, a(n) < n^2. - Benoit Cloitre, Aug 24 2002
Extensions
Offset corrected by Reinhard Zumkeller, Jun 18 2009
Name edited by Michel Marcus, Nov 12 2023