cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037223 Number of solutions to non-attacking rooks problem on n X n board that are invariant under 180-degree rotation.

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 48, 48, 384, 384, 3840, 3840, 46080, 46080, 645120, 645120, 10321920, 10321920, 185794560, 185794560, 3715891200, 3715891200, 81749606400, 81749606400, 1961990553600, 1961990553600, 51011754393600, 51011754393600, 1428329123020800, 1428329123020800
Offset: 0

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

This is just A000165 doubled up. Normally such sequences do not get their own entry in the OEIS. This is an exception. - N. J. A. Sloane, Sep 23 2006
Also the number of permutations of (1,2,3,...,n) for which the reverse of the inverse is the same as the inverse of the reverse. - Ian Duff, Mar 09 2007
Conjecture: a(n) = Product_{1<=i<=n and phi(i)<=floor(i/2)}i. - Enrique Pérez Herrero, May 31 2012. This conjecture is WRONG, counterexample is n=105. [Vaclav Kotesovec, Sep 07 2012]

References

  • E. Lucas, Theorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.

Crossrefs

Programs

  • Magma
    [Factorial((n div 2) -1)*2^((n div 2)-1): n   in [2..35]]; // Vincenzo Librandi, Nov 17 2018
  • Maple
    For Maple program see A000903.
    # second Maple program:
    a:= n-> (r-> r!*2^r)(iquo(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 23 2013
  • Mathematica
    f[n_]:=Times@@Select[Range[n],EulerPhi[#]<=Floor[#/2]&]; Table[f[n],{n,1,30}] (* Conjectured: Enrique Pérez Herrero, May 31 2012 *)(* This conjecture and also program is WRONG for n=105, Vaclav Kotesovec, Sep 07 2012 *)
    a[n_] := (2*Floor[n/2])!!; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 23 2013, after N. J. A. Sloane's comment *)

Formula

a(2n) = a(2n+1) = n!*2^n.
E.g.f.: 1 + x + (1 + x + x^2)*exp(x^2/2)*sqrt(Pi/2)*erf(x/sqrt(2)), where erf denotes the error function. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
For asymptotics see the Robinson paper.
E.g.f.: Q(0) where Q(k)= 1 + x/(2*k + 1 - x*(2*k+1)/(x+1/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 21 2012
E.g.f.: 1/(W(0)-x) where W(k)= x + 1/(1 + x/(2*k + 1 - x*(2*k+1)/W(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 22 2012
a(n) = Product_{i=1..floor(n/2)} 2*i. - Wesley Ivan Hurt, Oct 19 2014
D-finite with recurrence: a(n) +a(n-1) -n*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 20 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Edited by N. J. A. Sloane, Sep 23 2006