cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037264 Numbers whose sum of reciprocals of digits is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 236, 244, 263, 326, 333, 362, 424, 442, 488, 623, 632, 666, 848, 884, 999, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336
Offset: 1

Views

Author

Keywords

Comments

Intersection of A214958 and A052382: A214949(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

Examples

			63 is a term: 1/((1/6) + (1/3)) = 2.
		

Crossrefs

Programs

  • Haskell
    a037264 n = a037264_list !! (n-1)
    a037264_list = filter ((== 1) . a168046) $
                          takeWhile (<= 999999999) a214958_list
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Mathematica
    Reap[Do[If[FreeQ[id = IntegerDigits[n], 0], If[IntegerQ[1/Total[1/id]], Sow[n]]], {n, 1, 10^4}]][[2, 1]] (* Jean-François Alcover, Dec 15 2015 *)
    Select[Range[6500],FreeQ[IntegerDigits[#],0]&&IntegerQ[1/Total[1/IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    isok(n) = {my(d=digits(n)); vecmin(d) && (numerator(sum(k=1, #d, 1/d[k])) == 1);} \\ Michel Marcus, May 24 2018
    
  • Python
    from fractions import Fraction
    def ok(n):
        ds = list(map(int, str(n)))
        return 0 not in ds and sum(Fraction(1, d) for d in ds).numerator == 1
    print(list(filter(ok, range(1, 6337)))) # Michael S. Branicky, Aug 08 2021