A037264 Numbers whose sum of reciprocals of digits is the reciprocal of an integer.
1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 236, 244, 263, 326, 333, 362, 424, 442, 488, 623, 632, 666, 848, 884, 999, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336
Offset: 1
Examples
63 is a term: 1/((1/6) + (1/3)) = 2.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1232 (complete sequence)
Programs
-
Haskell
a037264 n = a037264_list !! (n-1) a037264_list = filter ((== 1) . a168046) $ takeWhile (<= 999999999) a214958_list -- Reinhard Zumkeller, Aug 02 2012
-
Mathematica
Reap[Do[If[FreeQ[id = IntegerDigits[n], 0], If[IntegerQ[1/Total[1/id]], Sow[n]]], {n, 1, 10^4}]][[2, 1]] (* Jean-François Alcover, Dec 15 2015 *) Select[Range[6500],FreeQ[IntegerDigits[#],0]&&IntegerQ[1/Total[1/IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 29 2024 *)
-
PARI
isok(n) = {my(d=digits(n)); vecmin(d) && (numerator(sum(k=1, #d, 1/d[k])) == 1);} \\ Michel Marcus, May 24 2018
-
Python
from fractions import Fraction def ok(n): ds = list(map(int, str(n))) return 0 not in ds and sum(Fraction(1, d) for d in ds).numerator == 1 print(list(filter(ok, range(1, 6337)))) # Michael S. Branicky, Aug 08 2021
Comments