A037496 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
1, 3, 11, 34, 102, 308, 925, 2775, 8327, 24982, 74946, 224840, 674521, 2023563, 6070691, 18212074, 54636222, 163908668, 491726005, 1475178015, 4425534047, 13276602142, 39829806426, 119489419280, 358468257841, 1075404773523
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,0,1,-3).
Programs
-
Magma
I:=[1,3,11,34]; [n le 4 select I[n] else 3*Self(n-1) +Self(n-3)-3*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Nov 26 2016
-
Mathematica
With[{c=PadRight[{},30,{1,0,2}]},Table[FromDigits[Take[c,n],3],{n,30}]] (* or *) LinearRecurrence[{3,0,1,-3},{1,3,11,34},30] (* Harvey P. Dale, Mar 30 2012 *)
Formula
a(n) = 3*a(n-1) + a(n-3) - 3*a(n-4).
From Bruno Berselli, Jan 20 2011: (Start)
G.f.: x*(1+2*x^2)/((1-x)*(1-3*x)*(1+x+x^2)).
a(n) = round((11*3^n-13)/26) = (11*3^n-13)/26 + ((3-7*i*sqrt(3))*(-1+i*sqrt(3))^n + (3+7*i*sqrt(3))*(-1-i*sqrt(3))^n)/(78*2^n) where i is the imaginary unit. (End)