cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037496 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.

Original entry on oeis.org

1, 3, 11, 34, 102, 308, 925, 2775, 8327, 24982, 74946, 224840, 674521, 2023563, 6070691, 18212074, 54636222, 163908668, 491726005, 1475178015, 4425534047, 13276602142, 39829806426, 119489419280, 358468257841, 1075404773523
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    I:=[1,3,11,34]; [n le 4 select I[n] else 3*Self(n-1) +Self(n-3)-3*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Nov 26 2016
  • Mathematica
    With[{c=PadRight[{},30,{1,0,2}]},Table[FromDigits[Take[c,n],3],{n,30}]] (* or *) LinearRecurrence[{3,0,1,-3},{1,3,11,34},30] (* Harvey P. Dale, Mar 30 2012 *)

Formula

a(n) = 3*a(n-1) + a(n-3) - 3*a(n-4).
From Bruno Berselli, Jan 20 2011: (Start)
G.f.: x*(1+2*x^2)/((1-x)*(1-3*x)*(1+x+x^2)).
a(n) = round((11*3^n-13)/26) = (11*3^n-13)/26 + ((3-7*i*sqrt(3))*(-1+i*sqrt(3))^n + (3+7*i*sqrt(3))*(-1-i*sqrt(3))^n)/(78*2^n) where i is the imaginary unit. (End)