cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038003 Odd Catalan numbers: a(n) = A000108(2^n-1).

Original entry on oeis.org

1, 1, 5, 429, 9694845, 14544636039226909, 94295850558771979787935384946380125, 11311095732253345760960290897769189975961199415637572612957718759342193629
Offset: 0

Views

Author

Keywords

Comments

The next term has 150 digits. - Harvey P. Dale, Feb 22 2016

Crossrefs

Intersection of A001790 and A098597. - Dimitri Papadopoulos, Oct 28 2016

Programs

  • Magma
    [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // Vincenzo Librandi, Nov 01 2016
  • Mathematica
    Select[CatalanNumber[Range[0,300]],OddQ] (* Harvey P. Dale, Feb 22 2016 *)
  • PARI
    a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ Joerg Arndt, Nov 05 2015
    
  • Python
    from _future_ import division
    A038003_list, c, s = [1, 1], 1, 3
    for n in range(2,10**5+1):
        c = (c*(4*n-2))//(n+1)
        if n == s:
            A038003_list.append(c)
            s = 2*s+1 # Chai Wah Wu, Feb 12 2015
    

Formula

a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).
a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - Benoit Cloitre, Aug 17 2002
a(n) = A000108(2^n-1). - David Wasserman, May 07 2007