A038075 Number of rooted identity trees with 2-colored leaves.
2, 2, 3, 7, 16, 41, 110, 304, 858, 2474, 7234, 21418, 64057, 193277, 587531, 1797817, 5532916, 17115442, 53186682, 165958893, 519764706, 1633331926, 5148420607, 16273962742, 51574291758, 163834983761, 521597902077, 1663993969029, 5318540288800, 17029516243797
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<2, 2*n, b(n-1, n-1)): seq(a(n), n=1..35); # Alois P. Heinz, Aug 01 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n- i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, 2*n, b[n-1, n-1]]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
Formula
Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 3.3683668081969694736300401764..., c = 0.4229796097587478606873477... . - Vaclav Kotesovec, Sep 10 2014
G.f. A(x) satisfies: A(x) = x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023