cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A363509 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (3 + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 4, 10, 30, 101, 361, 1354, 5238, 20740, 83683, 342719, 1421019, 5953306, 25162342, 107163924, 459438524, 1981247950, 8588054014, 37398421941, 163534601567, 717776072291, 3161117717887, 13964782042188, 61866495037806, 274792382789958
Offset: 0

Views

Author

Seiichi Manyama, Jun 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = Exp[Sum[(-1)^(k+1)*(3+A[x^k])*x^k/k,{k,terms}]]+ O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, May 10 2025 *)
  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*(3+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = (1+x)^3 * Product_{k>=0} (1+x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( 3 * (-1)^k + Sum_{d|k} (-1)^(k/d) * d * a(d-1) ) * a(n-k).

A038076 Number of rooted identity trees with 3-colored leaves.

Original entry on oeis.org

3, 3, 6, 16, 46, 142, 461, 1542, 5278, 18417, 65218, 233816, 846938, 3094943, 11395715, 42237936, 157465847, 590075550, 2221391912, 8397223487, 31861406058, 121300625969, 463233477550, 1774034788166, 6811612470692, 26216538077715, 101125406981562
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, 3*n, b(n-1, n-1)):
    seq(a(n), n=1..35);  # Alois P. Heinz, Aug 01 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, 3*n, b[n-1, n-1]];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.0814589930714884560076189705..., c = 0.4583632659157592121544633778... . - Vaclav Kotesovec, Sep 06 2014
G.f. A(x) satisfies: A(x) = 2*x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023

A031148 Number of series-reduced planted trees with n leaves of 2 colors and no symmetries.

Original entry on oeis.org

2, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A052301. Cf. A000669, A001678, A038075, A050381.

Formula

Doubles (index 2+) under WEIGH transform.

A363510 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (4 + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 5, 15, 50, 190, 766, 3231, 14066, 62681, 284591, 1311622, 6120183, 28855529, 137257541, 657894518, 3174411715, 15406640415, 75162477018, 368383443235, 1813007892858, 8956214966017, 44393932344984, 220732441125743, 1100621484436502
Offset: 0

Views

Author

Seiichi Manyama, Jun 06 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*(4+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = (1+x)^4 * Product_{k>=0} (1+x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( 4 * (-1)^k + Sum_{d|k} (-1)^(k/d) * d * a(d-1) ) * a(n-k).

A363542 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (2^k + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 3, 5, 14, 38, 114, 360, 1166, 3872, 13094, 44961, 156244, 548636, 1943333, 6935817, 24917586, 90039163, 327029681, 1193258619, 4371901789, 16077606949, 59325057056, 219579151797, 815017718383, 3032959638204, 11313632991360, 42295634914403
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*(2^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = (1+2*x) * Product_{k>=0} (1+x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( (-2)^k + Sum_{d|k} (-1)^(k/d) * d * a(d-1) ) * a(n-k).

A363543 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (3^k + A(x^k)) * x^k/k ).

Original entry on oeis.org

1, 4, 7, 23, 69, 234, 826, 3000, 11168, 42313, 162829, 634052, 2495051, 9903761, 39612048, 159481988, 645833656, 2628829700, 10749777653, 44139474552, 181916530895, 752288709592, 3120574260606, 12981015704961, 54138655342763, 226330448292140
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*(3^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = (1+3*x) * Product_{k>=0} (1+x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( (-3)^k + Sum_{d|k} (-1)^(k/d) * d * a(d-1) ) * a(n-k).
Showing 1-6 of 6 results.